WBBSE Class 10 Maths Algebra Chapter 4 Variation Multiple Choice Questions
Example 1. x ∝ \(\frac{1}{y}\) then
- x = \(\frac{1}{y}\)
- y = \(\frac{1}{x}\)
- xy = 1
- xy = non-zero constant
Read And Learn Also WBBSE Class 10 Maths Multiple Choice Questions
Solution: x ∝ \(\frac{1}{y}\) ⇒ xy=k
⇒ (k is a non-zero variation constant)
∴ The correct answer is 4. xy = non-zero constant

Example 2. If x ∝ y then
- x2 ∝ y3
- x3 ∝ y2
- x ∝ y3
- x2 ∝ y2
Solution: x = ky (k is a non-zero variation constant)
⇒ or, \(\frac{x^2}{y^2}=k^2\)
∴ x2 ∝ y2
∴ The correct answer is 4. x2 ∝ y2
Class 10 Maths Algebra Chapter 4 MCQs
Example 3. If x ∝ y and y = 8 when x = 2 if y = 16 then the value of x is
- 2
- 4
- 6
- 18
Solution: x = ky (k is a non-zero variation constant)
⇒ or, 2 = k x 8 or, k = \(\frac{1}{4}\)
∴ x = \(\frac{1}{4}\)y = \(\frac{1}{4}\) x 16 = 4
∴ The correct answer is 2. 4
Example 4. If x ∝ y2 and y = 4 when x = 8 ; if x = 32 then the value of y is
- 4
- 8
- 16
- 32
Solution: x = ky2 (k is a non-zero variation constant)
⇒ or, 8 = k(4)2
⇒ or, k = \(\frac{1}{2}\)
⇒ Now, x = \(\frac{1}{2}\)y2
⇒ 32 = \(\frac{1}{2}\)y2
⇒ or, y = 8
∴ The correct answer is 2. 8
Example 5. If y – z ∝ \(\frac{1}{x}\) , z – x ∝ \(\frac{1}{y}\), x – y ∝ \(\frac{1}{z}\) sum of three variation constant is
- 0
- 1
- -1
- 2
Solution: y – z = \(\frac{k_1}{x}\), z – x = \(\frac{k_2}{y}\) , x – y = \(\frac{k_3}{z}\) (k1, k2, k3 are non zero variation constant)
⇒ Now, k1 + k2 + k3 = xy – xz + yz – xy + xz – yz = 0
∴ The correct answer is 1. 0
Factorization MCQs With Solutions
Example 6. If x ∝ \(\frac{1}{y}\) & y ∝ \(\frac{1}{z}\) then
- x ∝ z
- xy ∝ z
- x ∝ yz
- x ∝ \(\frac{1}{z}\)
Solution: x = \(\frac{k_1}{y}\) , y = \(\frac{k_2}{z}\) (k1, k2 non zero variation constant)
⇒ x = \(\frac{k_1}{y}\) = \(\frac{k_1}{\frac{k_2}{z}}\) = \(\frac{k_1}{k_2}\)
∴ x ∝ z
∴ The correct answer is 1. x ∝ z
Example 7. y ∝ x2 and y = 9 when x = 9 then the value of x if y = 4
- ± 3
- ± 4
- ± 6
- ± 8
Solution: y = kx2 (k is a non zero variation constant)
⇒ 9 = k (9)2 or, k = \(\frac{1}{9}\)
∴ y = \(\frac{1}{9}\)x2
⇒ x2 = 36
⇒ or, x = ± 6
∴ The correct answer is 3. ± 6
Example 8. Corresponding value of x and y are x = 12, y = 16 ; x = 3, y = 4 then relation between x and y is
- x ∝ \(\frac{1}{y}\)
- x3 ∝ y2
- x3 ∝ y2
- x2 ∝ y2
Solution: \(\frac{x}{y}=\frac{12}{16}=\frac{3}{4}, \quad \frac{x}{y}=\frac{3}{4}\)
∴ \(\frac{x}{y}\) = constant, x ∝ y
∴ The correct answer is 2. x2 ∝ y2
Class 10 Algebra Chapter 4 MCQs With Answers
Example 9. If x ∝ y3 and z2 ∝ x then
- y ∝ z3
- y ∝ z2
- y3 ∝ z2
- y3 ∝ z
Solution: x ∝ y3 or, x = k1y3, z2 = k2x (k1, k2 non zero variation constant)
∴ xz2 = k1k2 y3x
⇒ or, \(y^3=\frac{1}{k_1 k_2} z^2\)
⇒ or, y3 ∝ z2
∴ The correct answer is 3. y3 ∝ z2
Example 10. If a2 ∝ bc, b2 ∝ d, c2 ∝ b, d2 ∝ ac and abed = k then value of k is
- ∝ ab
- ∝ bc
- ∝ cd
- ∝ da
Solution: \(a^2=k_1 b c, b^2=k_2 d, c^2=k_3 b, d^2=k_4 a c\) (k1, k2, k3, k4 non zero variation constant)
a2b2c2d2 = k1, k2, k3, k4 (abcd) bc, k ∝ bc or, (abcd) ∝ bc
∴ The correct answer is 2. ∝ bc