WBBSE Class 10 Maths Algebra Chapter 4 Variation Multiple Choice Questions

WBBSE Class 10 Maths Algebra Chapter 4 Variation Multiple Choice Questions

Example 1. x ∝ \(\frac{1}{y}\) then

  1. x = \(\frac{1}{y}\)
  2. y = \(\frac{1}{x}\)
  3. xy = 1
  4. xy = non-zero constant

Read And Learn Also WBBSE Class 10 Maths Multiple Choice Questions

Solution: x ∝ \(\frac{1}{y}\) ⇒ xy=k

⇒ (k is a non-zero variation constant)

∴ The correct answer is 4. xy = non-zero constant

WBBSE Class 10 Maths Algebra Chapter 4 Variation Multiple Choice Questions

Example 2. If x ∝ y then

  1. x2  ∝ y3
  2. x3 ∝ y2
  3. x  ∝ y3
  4. x2 ∝ y2

Solution: x = ky (k is a non-zero variation constant)

⇒ or, \(\frac{x^2}{y^2}=k^2\)

∴ x2 ∝ y2

∴ The correct answer is 4. x2 ∝ y2

Class 10 Maths Algebra Chapter 4 MCQs

Example 3. If x ∝ y and y = 8 when x = 2 if y = 16 then the value of x is

  1. 2
  2. 4
  3. 6
  4. 18

Solution: x = ky (k is a non-zero variation constant)

⇒ or, 2 = k x 8 or, k = \(\frac{1}{4}\)

∴ x = \(\frac{1}{4}\)y = \(\frac{1}{4}\) x 16 = 4

∴ The correct answer is 2. 4

Example 4. If x ∝ y2 and y = 4 when x = 8 ; if x = 32 then the value of y is

  1. 4
  2. 8
  3. 16
  4. 32

Solution: x = ky2 (k is a non-zero variation constant)

⇒ or, 8 = k(4)2

⇒ or, k = \(\frac{1}{2}\)

⇒ Now, x = \(\frac{1}{2}\)y2

⇒ 32 = \(\frac{1}{2}\)y2

⇒ or, y = 8

∴ The correct answer is 2. 8

Example 5. If y – z ∝ \(\frac{1}{x}\) , z – x ∝ \(\frac{1}{y}\), x – y ∝ \(\frac{1}{z}\) sum of three variation constant is

  1. 0
  2. 1
  3. -1
  4. 2

Solution: y – z = \(\frac{k_1}{x}\), z – x = \(\frac{k_2}{y}\) , x – y = \(\frac{k_3}{z}\) (k1, k2, k3 are non zero variation constant)

⇒ Now, k1 + k2 + k3 = xy – xz + yz – xy + xz – yz = 0

∴ The correct answer is 1. 0

Factorization MCQs With Solutions

Example 6. If x ∝ \(\frac{1}{y}\) & y ∝ \(\frac{1}{z}\) then

  1. x ∝ z
  2. xy ∝ z
  3. x ∝ yz
  4. x ∝ \(\frac{1}{z}\)

Solution: x = \(\frac{k_1}{y}\) , y = \(\frac{k_2}{z}\) (k1, k2 non zero variation constant)

⇒  x = \(\frac{k_1}{y}\) = \(\frac{k_1}{\frac{k_2}{z}}\) = \(\frac{k_1}{k_2}\)

∴ x ∝ z

∴ The correct answer is 1. x ∝ z

Example 7. y ∝ x2 and y = 9 when x = 9 then the value of x if y = 4

  1. ± 3
  2. ± 4
  3. ± 6
  4. ± 8

Solution: y = kx2 (k is a non zero variation constant)

⇒ 9 = k (9)2 or, k = \(\frac{1}{9}\)

∴ y = \(\frac{1}{9}\)x2

⇒  x2 = 36

⇒  or, x = ± 6

∴ The correct answer is 3. ± 6

Example 8. Corresponding value of x and y are x = 12, y = 16 ; x = 3, y = 4 then relation between x and y is

  1. x  ∝ \(\frac{1}{y}\)
  2. x3 ∝ y2
  3. x3 ∝ y2
  4. x2 ∝ y2

Solution: \(\frac{x}{y}=\frac{12}{16}=\frac{3}{4}, \quad \frac{x}{y}=\frac{3}{4}\)

∴ \(\frac{x}{y}\) = constant, x ∝ y

∴ The correct answer is 2. x2 ∝ y2

Class 10 Algebra Chapter 4 MCQs With Answers

Example 9. If x ∝ y3 and z2 ∝ x then

  1. y ∝ z3
  2. y ∝ z2
  3. y3 ∝ z2
  4. y3 ∝ z

Solution: x ∝ y3 or, x = k1y3, z2 = k2x (k1, k2 non zero variation constant)

∴ xz2 = k1k2 y3x

⇒  or, \(y^3=\frac{1}{k_1 k_2} z^2\)

⇒  or, y3 ∝ z2

∴ The correct answer is 3. y3 ∝ z2

Example 10. If a2 ∝ bc, b2 ∝ d, c2 ∝ b, d2 ∝ ac and abed = k then value of k is

  1. ∝ ab
  2. ∝ bc
  3. ∝ cd
  4. ∝ da

Solution: \(a^2=k_1 b c, b^2=k_2 d, c^2=k_3 b, d^2=k_4 a c\) (k1, k2, k3, k4 non zero variation constant)

a2b2c2d2 = k1, k2, k3, k4 (abcd) bc, k ∝ bc or, (abcd) ∝ bc

∴ The correct answer is 2. ∝ bc

Leave a Comment