WBBSE Class 10 Maths Trigonometry Chapter 2 Trigonometric Ratios And Trigonometric Identities Multiple Choice Questions
Example 1. If 3x = cosec α and \(\frac{3}{x}\) = cot α, then the value of 3\(\left(x^2-\frac{1}{x^2}\right)\) is
- \(\frac{1}{27}\)
- \(\frac{1}{81}\)
- \(\frac{1}{3}\)
- \(\frac{1}{9}\)
Solution: \((3 x)^2-\left(\frac{3}{x}\right)={cosec}^2 \alpha-\cot ^2 \alpha\)
Read And Learn Also WBBSE Class 10 Maths Multiple Choice Questions
⇒ \(9\left(x^2-\frac{1}{x^2}\right)=1 \quad \Rightarrow 3\left(x^2-\frac{1}{x^2}\right)=\frac{1}{3}\)
∴ The Correct Answer is 3. \(\frac{1}{3}\)

Example 2. If 2x = sec A and \(\frac{2}{x}\) = tan A, then the value of 2\(\left(x^2-\frac{1}{x^2}\right)\) is
- \(\frac{1}{2}\)
- \(\frac{1}{4}\)
- \(\frac{1}{8}\)
- \(\frac{1}{16}\)
Solution: \((2 x)^2-\left(\frac{2}{x}\right)^2=\sec ^2 \mathrm{~A}-\tan ^2 \mathrm{~A}\)
⇒ \(4\left(x^2-\frac{1}{x^2}\right)=1\)
⇒ \(2\left(x^2-\frac{1}{x^2}\right)=\frac{1}{2}\)
∴ The correct answer is 1. \(\frac{1}{2}\)
Class 10 Maths Trigonometry Chapter 2 MCQs
Example 3. If tan α+ cot α = 2 then the value of (tan13 α + cot13 α) is
- 1
- 0
- 2
- None of these
Solution: \(\tan \alpha+\cot \alpha=2\)
⇒ \(\tan \dot{\alpha}+\frac{1}{\tan \alpha}=2\)
⇒ \(\frac{\tan ^2 \alpha+1}{\tan \alpha}=2\)
⇒ \(\tan ^2 \alpha+1=2 \tan \alpha \Rightarrow \tan ^2 \alpha-2 \tan \alpha+1=0\)
⇒ \((\tan \alpha-1)^2=0\)
⇒ \(\tan \alpha-1=0 \quad \Rightarrow \quad \tan \alpha=1\)
∴ \(\cot \alpha=\frac{1}{\tan \alpha}=1\)
\(\tan ^{13} \alpha+\cot ^{13} \alpha\)= \((1)^{13}+(1)^{13}=1+1=2\)
∴ The correct answer is 3. 2
Example 4. If sin θ- cos θ = 0 [0° ≤ θ ≤ 90°] and sec θ + cosec θ = x, then the value of x is
- 1
- 2
- 2
- 2√2
Solution: sin θ – cos θ = 0
⇒ sin θ = cos θ
⇒ \(\frac{\sin \theta}{\cos \theta}=1\)
⇒ tan θ = 1 = tan 45° [0° ≤ θ ≤ 90°]
⇒ θ = 45°
x = sec θ + cosec θ = sec 45° + cosec 45°
= √2 + √2 = 2√2
∴ The correct answer is 4. 2√2
Heights And Distances Mcqs With Solutions Class 10
Example 5. If 2 cos 3θ = 1, then the value of θ is
- 10°
- 15°
- 20°
- 30°
Solution: 2 cos 3θ= 1
⇒ cos 3θ = \(\frac{1}{2}\)
⇒ cos 3θ= cos 60°
⇒ 3θ= 60° ⇒ θ = 20°
∴ The correct answer is 3. 20°
Example 6. If sin θ + cosec θ =2 then the value of (sin θ – cosec θ) is
- 2
- 1
- 0
- \(\frac{\sqrt{3}}{2}\)
Solution: sin θ + cosec θ = 2
(sin θ – cosec θ)2 = (sin θ+ cosec θ)2 – 4 sin θ.cosec θ
= (2)2 – 4 x 1 = 0
⇒ sin θ – cosec θ = 0
∴ The correct answer is 3. 0
Example 7. If tan θ = \(\frac{a}{b}\) then the value of sin θ is
- \(\frac{a}{\sqrt{a^2-b^2}}\)
- \(\frac{b}{\sqrt{a^2+b^2}}\)
- \(\frac{a+b}{\sqrt{a^2+b^2}}\)
- \(\frac{a}{\sqrt{a^2+b^2}}\)
Solution: tan θ = \(\frac{a}{b}\)
⇒ cot θ = \(\frac{b}{a}\)
cosec θ = \(\sqrt{1+\cot ^2 \theta}=\sqrt{1+\frac{b^2}{a^2}}=\frac{\sqrt{a^2+b^2}}{a}\)
sin θ = \(\frac{a}{\sqrt{a^2+b^2}}\)
∴ The correct answer is 4. \(\frac{a}{\sqrt{a^2+b^2}}\)
Class 10 Trigonometry Chapter 2 Mcqs With Answers
Example 8. If sec θ – cosec θ = 0 then the value of tan θ is
- 0
- 1
- -1
- 2
Solution: sec θ – cosec θ = 0
⇒ sec θ = cosec θ
⇒ \(\frac{1}{\cos \theta}=\frac{1}{\sin \theta}\)
⇒ cos θ = sin θ
tan θ = \(\frac{\sin \theta}{\cos \theta}=\frac{\sin \theta}{\sin \theta}\) = 1
∴ The correct answer is 2. 1