WBBSE Class 10 Maths Algebra Chapter 2 Ratio And Proportion Multiple Choice Questions
Example 1. The fourth proportion of 3, 4, and 6 is
- 8
- 10
- 12
- 24
Read And Learn Also WBBSE Class 10 Maths Multiple Choice Questions
Solution: 3 : 4 : : 6 : ? or, \(\frac{3}{4}\) = \(\frac{6}{?}\)
⇒ or, ? = \(\frac{6 \times 4}{3}\) = 8
∴ The correct answer is 1. 8

Example 2. The 3rd proportion of 8 and 12 is
- 12
- 16
- 18
- 20
Solution: 8 x third proportional = 122
⇒ or, third proportional = \(\frac{144}{8}\) = 18
∴ The correct answer is 3. 18
Example 3. The mean proportional of 16 and 25 is
- ± 400
- ± 100
- ± 20
- ± 40
Solution: Mean proportional = ± \(\sqrt{16 \times 25}\) = ± 20
∴ The correct answer is 3. ± 20
Wbbse Class 10 Maths Algebra Notes
Example 4. a is a positive integer and a: \(\frac{27}{64}\) = \(\frac{3}{4}\): a, then the value of a is
- \(\frac{81}{256}\)
- 9
- \(\frac{9}{16}\)
- \(\frac{16}{9}\)
Solution: \(\frac{a}{\frac{27}{64}}=\frac{3}{\frac{4}{a}}\)
⇒ or, \(a^2=\frac{27}{64} \times \frac{3}{4}\)
⇒ or, a = \(\frac{9}{16}\)
∴ The correct answer is 3. \(\frac{9}{16}\)
Example 5. If 2a = 3b = 4c then a: b: c is
- 3: 4: 6
- 4: 3: 6
- 3: 6: 4
- 6: 4: 3
Solution: Let 2a = 3b = 4c = k (≠0)
∴ a : b : c = \(\frac{k}{2}: \frac{k}{3}: \frac{k}{4}\) =6:4:3
∴ The correct answer is 4. 6: 4: 3
Example 6. If 2x = 3y = 5z then x : y : z
- 15: 10: 6
- 6: 10: 15
- 15: 6: 10
- none of these
Solution: Let 2x = 3y = 5z = k (≠0)
∴ x: y: z = \(\frac{k}{2}: \frac{k}{3}: \frac{k}{4}\) = 15 : 10 : 6
∴ The correct answer is 1. 15: 10: 6
Example 7. If x + y = z and 2x – z = y then x: y: z =
- 1: 2: 3
- 2: 1: 3
- 3: 1: 2
- none of these
Solution: x = z – y = \(\frac{y+z}{2}\)
⇒ or, 2z- 2y = y + z or, z = 3y
⇒ Now, x = z- y = 3y-y = 2y
∴ x: y: z = 2y: y: 3y = 2: 1: 3
∴ The correct answer is 2. 2: 1: 3
Class 10 Maths Algebra Chapter 2 MCQs
Example 8. If \(\frac{m}{n}\) = \(\frac{2}{3}\) then \(\frac{n+m}{n-m}\) is
- 2
- 4
- 5
- 10
Solution: \(\frac{n}{m}=\frac{3}{2} \quad \text { or, } \quad \frac{n+m}{n-m}=\frac{3+2}{3-2}\) [componendo & dividendo]
⇒ or, \(\frac{n+m}{n-m}=5\)
∴ The correct answer is 3. 5
Example 9. If (a + b) : √ab = 4 : 1 then a : b =
- (2+√3):(2-√3)
- (2-√3) : (2+√3)
- 1:1
- None of these
Solution: \(\frac{a+b}{\sqrt{a b}}=\frac{4}{1}\)
⇒ or, \(\quad \frac{a+b+2 \sqrt{a b}}{a+b-2 \sqrt{a b}}=\frac{4+2}{4-2}\) [Componendo & dividendo]
⇒ or, \(\frac{(\sqrt{a}+\sqrt{b})^2}{(\sqrt{a}-\sqrt{b})^2}=3\)
⇒ or, \(\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}=\sqrt{3}\), Again by componendo and dividendo,
⇒ We get, \(\frac{2 \sqrt{a}}{2 \sqrt{b}}=\frac{\sqrt{3}+1}{\sqrt{3}-1}\),
⇒ \(\frac{a}{b}=\frac{(\sqrt{3}+1)^2}{(\sqrt{3}-1)^2}=\frac{2+\sqrt{3}}{2-\sqrt{3}}\)
∴ The correct answer is 1.
Example 10. If \(\frac{a}{3}=\frac{b}{4}=\frac{c}{7}=\frac{2 a-3 b+c}{p}\) = \(\frac{2 a-3 b+c}{p}\) then P =
- 0
- 1
- 2
- 3
Solution: Let \(\frac{a}{3}=\frac{b}{4}=\frac{c}{7}\) = k (≠ 0)
∴ a = 3k, b = 4k, c = 7k.
∴ \(\frac{2 \cdot 3 k-3 \cdot 4 k+7 k}{p}=k\)
⇒ or, \(\frac{k}{p}\)
∴ p = 1
∴ The correct answer is 2. 1