WBBSE Class 10 Maths Mensuration Chapter 4 Sphere Multiple Choice Questions
Example 1. The volume of a solid sphere having a radius of 2r units length is
- \(\frac{32}{3} \pi r^3 \text { cu.u. }\)
- \(\frac{16 \pi r^3}{3} \text { cu.u }\)
- \(\frac{8 \pi r^3}{3} \mathrm{cu} .\)
- \(\frac{64 \pi r^3}{3} \text { cu.u }\)
Solution: Volume = \(\frac{4}{3} \pi(2 r)^3 \text { cu unit }=\frac{32 \pi r^3}{3} \text { cu.u }\)
∴ Answer is 1. \(\frac{32}{3} \pi r^3 \text { cu.u. }\)

Example 2. If the ratio of the volumes of two solid sphere is 1: 8, the ratio of their curved surface area is
- 1: 2
- 1: 4
- 1: 8
- 1: 16
Solution: Ratio of volume = \(\frac{\frac{4}{3} \pi}{\frac{4}{3} \pi}\left(\frac{r_1^2}{r_1^2}\right)^3=\left(\frac{1}{8}\right)\)
∴ \(\frac{r_1}{r_2}=\frac{1}{2}\)
Ratio of curved surface = \(\frac{4 \pi}{4 \pi}\left(\frac{r_1}{r_2}\right)^2=\frac{1}{4}\)
∴ Answer is 2. 1: 4
Read And Learn Also WBBSE Class 10 Maths Multiple Choice Questions
Example 3. The whole surface area of a solid hemisphere with length of 7 cm radius is
- 588 π sq. m
- 392 π sq. m
- 147 π sq. m
- 98 π sq. m
Solution: Whole surface area = 3π (7)2 sq. cm = 147 sq. cm
∴ Answer is 3. 147 π sq. m
Class 10 Maths Mensuration Chapter 4 Sphere MCQs
Example 4. If the ratio of curved surface areas of two solid sphere is 16: 9, the ratio of their volumes is
- 64: 27
- 4: 3
- 27: 64
- 3: 4
Solution: \(\frac{4 \pi}{4 \pi}\left(\frac{r_1}{r_2}\right)^2=\frac{16}{7}\)
or, \(\frac{r_1}{r_2}=\frac{4}{3}\)
∴ \(\frac{\frac{4}{3} \pi}{\frac{4}{3} \pi}\left(\frac{r_1}{r_2}\right)^3=\left(\frac{4}{3}\right)^3\) = 64: 27
∴ Answer is 1. 64: 27
Example 5. If numerical value of curved surface area of a solid sphere is three times of its volume the length of radius is
- 1 unit
- 2 unit
- 3 unit
- 4 unit
Solution: \(4 \pi r^2=3 \frac{4}{3} \pi r^3\) or, r = 1
∴ Answer is 1. 1 unit
Sphere Mcqs Class 10
Example 6. Volume of a sphere of radius \(\frac{r}{2}\) units will be
- \(\frac{1}{6} \pi r^3 \text { cu. u. }\)
- \(\frac{4}{3} \pi r^3 \text { cu. u. }\)
- \(\frac{2}{3} \pi r^3 \text { cu. u. }\)
- \(\frac{1}{3} \pi r^3 \text { cu. u. }\)
Solution: Volume = \(\frac{4}{3} \pi\left(\frac{r}{2}\right)^3\) cu. unit
= \(\frac{\pi r^3}{6}\) cu units
∴ Answer is 1. \(\frac{1}{6} \pi r^3 \text { cu. u. }\)
Example 7. If numerical value of curved surface area of a solid sphere Is equal to its volume, then the length of its radius is
- 6 unit
- 5 unit
- 4 unit
- 3 unit
Solution: \(4 \pi r^2=\frac{4}{3} \pi r^3\) or, r = 3
∴ Answer is 4. 3 unit
Example 8. The ratio of whole surface area of a solid sphere and solid hemisphere of same radius will be
- 4: 3
- 3: 4
- 1: 2
- None of these
Solution: Ratio = 4π (r)2 : 3πr2 = 4:3
∴ Answer is 1. 4: 3
Example 9. The ratio of numerical values of volume and whole surface area of a sphere is 2: 1. Numerical value of radius is
- 5
- 6
- 3
- 1
Solution: \(\frac{\frac{4}{3} \pi r^3}{4 \pi r^2}=\frac{2}{1}\)
or, \(\frac{r}{2}\) = 2, r = 6
∴ Answer is 2. 6
Class 10 Mensuration Sphere Mcqs With Answers
Example 10. Volume of a sphere is \(\frac{4}{3} \pi r^3\) πr3 cu. units. The sphere is inscribed (in) a cube. The ratio of volumes of the cube and the sphere is
- 3: π
- 4: π
- 6: π
- 8: π
Solution: Length of the side of the cube = 2r units
Ratio = (2r)3 : \(\frac{4}{3}\) πr3 = 6 : n
∴ Answer is 3. 6: