WBBSE Class 7 Maths Solutions For Algebra Chapter 6 Factorisation

Algebra Chapter 6 Factorisation

Question 1. Choose the correct answers

1. The number of prime factors of 20 a²bc³

  1. 7
  2. 6
  3. 9
  4. 10

Solution:

Prime Factor 20a²bc³

20a²bc³

= 2 х 5 х 2 х а х a x b x c x c x c

= 9

∴ 20a²bc³ = 9

∴ 20a²bc³ = 9 option ‘3’ = 9 corret Answer.

Read and Learn More Class 7 Maths Solutions

WBBSE Class 7 Maths Solutions For Algebra Chapter 6 Factorisation

2. The sum of factors of (12a4 – 18a2 + 30a) is

  1. 2a4 – 2a2 + 10
  2. a4 – a2 + 9
  3. 2a3 – 2a – 10
  4. 2a3 + 2a – 10

Solution:

Sum of factors (12a4 – 18a2 + 30a)

12a4 – 18a2 + 30a

6a(2a3 – 3a2 + 5)

cubic polynomial ax3 + bx2 + cx + d

sum of factors = –\(\frac{b}{a}\)

so for 2a3 – 3a2 + 5 = -(\(\frac{-3}{2}\)) = \(\frac{3}{2}\)

Now let’s substitute the sum back to the original equation

6a x \(\frac{3}{2}\) = 2a3 – 2a + 10

∴ The sum of factors of 12a4 – 18a2 + 30a is 2a3 – 2a + 10

∴ The option (1) 2a3 – 2a + 10 is correct answer

Class 7 Algebra Problems With Solutions

3. The Common Factor of 24a3b2c4, 36ab3c3 and 48a4bc2 is

  1. 6abc
  2. 12abc2
  3. 6a3bc2
  4. 12a2b2c2

Solution:

24a3b2c4 = 2 x 12 x a x a x a x b x b x c x c x c x c

36ab3c3 = 3 x 12 x a x b x b x b x c x c x c

48a4bc2 = 4 х 12 х а х а х ах а х b x c x с

Common Factor 12abc2

∴ Option (2) 12abc2 is the correct answer.

4. The sum of factors of x(x2-q) is

  1. x + x2 – 29
  2. x + 9
  3. x – 9

Solution:

x(x2-9)

x(x2-(3)2)

x(x+3)(x-3)

Sum of factors x + x + 3 + x – 3 = 3x

∴ The option (4) 3x is the correct answer.

5. The difference of two factors of (4x2 – 25) is

  1. 4x
  2. 4x – 10
  3. 10
  4. x – 5

Solution:

(4x2 – 25)

{(2x)2 – (5)2} [a2-b2=(a+b)(a-b)]

(2x+5)(2x-5)

The differences between the factors are

⇒ (2x + 5) – (2x – 5)

⇒ 2x + 5 – 2x + 5

⇒ 10

∴ Option (3) 10 is the correct answer.

Question 2. Write true or False

1. The number of prime factors of 6x is 3
Solution:

Prime factors of 6x  2 x 3 x x =3 → True

2. The sum of factors of (4-x2) is ‘2’
Solution:

⇒ ((2)2 – x2)

⇒ (2 + x) (2 – x)

⇒2 + x + 2 – x

⇒ 4

∴  (4-x2) sum of factors is ‘2’

∴ False

Class 7 Maths Chapter 6 Solved Exercises

3. One of the factors of (a2-a-5a3) is (a2-1-5a)
Solution:

⇒ (a2-a-5a3)

⇒ a(a-1-5a2) is (a2-1-5a)

∴ False

4. The Prime Factors of 18ab2c5 are 2 x 3 x 3 x a, b, C
Solution:

18ab2c5

2 x 3 x 3 x a x b x b x c x c x c x c x c.

prime Factors of 18ab2c5 is 2 x 3 x 3 x a x b x b x c x c x c x c x c.

∴ False

5. The Common Factor of (2a2 + 3a) and (4a – 7a2) is a
Solution:

(2a2 + 3a), (4a – 7a2)

a(2a + 3) – a(-4-7a).

a + 2a + 3 – a – 4 + 7a

3a + 3

3(a+1)

and

(6a – 4)

2(30 + 2)

Here the common factor is ‘a’

∴  True

Question 3. Fill in the Blanks:

1. There is no common Prime factor of 5a2b and 9cd2
Solution: Prime

2. The sum of factors of (3x2-27) is
Solution:

(3x2 – 27)

3(x2 – 9)

3(x2-(3)2)

3(x+3)(x-3)

3 = x + 3 + x – 3

2x + 3

∴ The sum of factors of (3x2 – 27) is (2x + 3)

3. The difference of factors of (9x2 – 16)
Solution:

9x2 – 16

⇒ (3x)2 – (4)2 [a2 – b2 = (a+b) (a-b)]

⇒ (3x + 4) (3x – 4)

Difference of factors we subtract the smaller

Factor from the larger one: (3x+4)- (3x-4)

Expanding this expression: 3x + 4 – 3x + 4 = 8

∴ The difference of factors of (9x2 – 16) is 8

Algebra Formulas For Class 7 Wbbse

Question 4. If a2 – 7a + 12 = (a – 4) (a + p). then find the value of ‘P’
Solution:

a2 – 7a + 12 = (a – 4)(a + p)

⇒ a2 – 7a +12 = a(a + p) – 4(a + p)

⇒ a2 – 7a +12 = a2 + ap – 4a – 4P

⇒ a2 – 7a + 12 = a2 + a(p-4) – 4p

∴ -7a = a(p-4)

⇒ \(\frac{7a}{a}\) = p – 4

-7 = p – 4

-7 + 4 = p

p = -3

and

12 = -4p

p = \(\frac{123}{-4}\)

p = -3

∴ a2 – 7a + 12 = (a – 4)(a + p)

∴ p = -3

Question 5. The product of two expression is \(\left(\frac{81}{a^4}-\frac{b^4}{25}\right)\) if one expresion is \(\left(\frac{a}{a^2}-\frac{b^2}{5}\right)\) then Find the other expression.
Solution:

⇒ \(\left(\frac{81}{a^4}-\frac{b^4}{25}\right)\)

⇒ \(\left\{\left(\frac{a}{a^2}\right)^2-\left(\frac{b^2}{5}\right)^2\right\}\) (\(a^2-b^2=(a+b)(a-b)\))

⇒ \(\left(\frac{9}{a^2}+\frac{b^2}{5}\right),\left(\frac{a}{a^2}-\frac{b^2}{5}\right)\)

The other expression is \(\left(\frac{9}{a^2}+\frac{b^2}{5}\right)\)

Question 6. Find the value of ‘p’ in expression (x2-px-6) if one of the Factors is (x-3) Find also another factor.
Solution:

(x2 – px – 6)

given that one factor is (x – 3) = 0

x = 3 Substitute in the above equation.

((3)2 – p(3)-6)= 0

9 – 3p – 6 = 0

-3P = -9 + 6

-3p = -3

p = \(\frac{-3}{-3}\)

∴ p = 1

(x2 – px – 6) = 0

(x2 – (1)x – 6) = 0

x2 – x – 6 = 0

x2 + 2x – 3x – 6 = 0

x(x+2)-3(x+2)=0

∴ (x+2)=0, (x-3)=0

x = -2, x = 3

∴ The value of p is 1

The other factor is (x+2)=0

∴ x = -2, and x = 3

WBBSE Maths Study Material Class 7

Question 7. Express \(\left(\frac{a}{b}-\frac{b}{a}\right)\) as a product of two expressions such that the sum of the expression is \(\left(\frac{a}{b}+\frac{b}{a}\right)\)
Solution:

⇒ \(\left(\frac{a}{b}-\frac{b}{a}\right)\)

Some of the expression is \(\left(\frac{a}{b}+\frac{b}{a}\right)\)

This can be be written as 1 + \(\frac{b}{a}\) x (\(\frac{a}{b}\) + 1)

Now let’s verify if the given expression can be factored as the product of two expressions whose sum is \(\left(\frac{a}{b}+\frac{b}{a}\right)\):

⇒ \(\left(\frac{a}{b}-\frac{b}{a}\right)\)

= \(\frac{a^2-b^2}{a b}\)

= \(\frac{(a+b)(a-b)}{a b}\)

= \(\frac{a-b}{b} \times \frac{a+b}{a}\)

= \(\left(\frac{a}{b}-1\right)\left(1+\frac{b}{a}\right)\)

∴ So \(\left(\frac{a}{b}-\frac{b}{a}\right)\) can be expressed as the product of (\(\frac{a}{b}\)-1) and (1 + \(\frac{b}{a}\)), and their sum is \(\frac{a}{b}\) + \(\frac{b}{a}\)

Question 8. Find the sum of the Factors of the expression (3a2 – b2 – c2 – 2ab – 2bc – 2ca)
Solution:

(3a2 – b – c2 – 2ab – 2bc – 2ca)

⇒ 3 + 3 + a + a – b – b – c – 2a + b − 2 + b + c – 2 + c + a

⇒ 6 + 4а – 6

⇒ 4a.

∴ The sum of factors of the expression (3a2-b2-c2-2ab-2bc-2ca) = 4a

Question 9. Resolve into factors.

1. \(\frac{a^4}{16}-\frac{81}{b^4}\)
Solution:

⇒ \(\frac{a^4}{16}-\frac{81}{b^4}\)

⇒ \(\left(\frac{a^2}{4}\right)^2-\left(\frac{9}{b^2}\right)^2\) (\(a^2-b^2=(a+b)(a-b)\))

⇒ \(\left(\frac{a^2}{4}+\frac{9}{b^2}\right)\left(\frac{a^2}{4}-\frac{9}{b^2}\right)\)

⇒ \(\left(\frac{a^2}{4}+\frac{9}{b^2}\right)\left(\left(\frac{a}{2}\right)^2-\left(\frac{3}{b}\right)^2\right)\)

⇒ \(\left(\frac{a^2}{4}+\frac{9}{b^2}\right)\left(\frac{a}{2}+\frac{3}{b}\right)\left(\frac{a}{2}-\frac{3}{b}\right)\)

∴ \(\frac{a^4}{16}-\frac{81}{b^4}=\left(\frac{a^2}{4}+\frac{9}{b^2}\right)\left(\frac{a}{2}+\frac{3}{b}\right)\left(\frac{a}{2}-\frac{3}{b}\right)\)

2. \(a^4-5 a^2+6 a\)
Solution:

⇒ \(a^4-5 a^2+6 a\)

⇒ \(a\left(a^3-5 a+6\right)\)

∴ \(a^4-5 a^2+6 a=a\left(a^3-5 a+6\right)\)

3. \(a^2-b^2+18 b-81\)
Solution:

⇒ \(a^2-b^2+18 b-81\)

⇒ \(a^2-\left(b^2-18 b+81\right)\)

⇒ \(a^2-(b-9)^2\)

(a+b-a)(a-b+9)

∴ \(a^2-b^2+18 b-81=(a+b-9)(a-b+9)\)

WBBSE Maths Study Material Class 7

4. 3x2 – xy – 4y2
Solution:

3x2 -xy – 4y2

⇒ 3x2 + 3xy – 4xy – 4y2

⇒ 3x(x+y) -4(x+y)

⇒ (x+y) (3x-4)

∴ 3x2 – xy – 4y2 = (x+4) (3x-4)

5. 18ax2 – 128a(x-2y)2
Solution:

18ax2 – 128a(x-2y)2

a[18x2 – 128(x-2y)2]

6. 18ax2 – 128a(x – 2y)2
Solution:

⇒ \(2 a \cdot 9 x^2-2 a \cdot 64(x-2 y)^2\)

⇒ \(2 a \cdot 9 x^2-2 a \cdot 64\left(x^2-4 x y+4 y^2\right)\)

⇒ \(2 a\left(9 x^2-64 x^2+256 x y-256 y^2\right)\)

⇒ \(2 a\left(9 x^2-64 x^2\right)+2 a\left(256 x y-256 y^2\right)\)

⇒ \(2 a\left(-55 x^2+256 x y-256 y^2\right)\)

⇒ \(2 a\left(-11 x^2+16 x y-16 y^2\right)\)

Now Let’s re-arrange the terms:

⇒ \(2 a\left(16 x y-11 x^2-16 y^2\right)\)

⇒ \(2 a\left(16 y(11 x-16 y)-11 x^2\right)\)

⇒ \(2 a(11 x-16 y)(16 y-5 x)\)

So, \(18 a x^2-128 a(x-2 y)^2\) can be simplified to \(2 a(11 x-6 y)(16 y-5 x)\).

7. \(81 a^4+643^4\)
Solution:

⇒ \(81 a^4+64 b^4\)

⇒ (3a+2b)(3a-2b)(3a+2b)(3a-2b)

⇒ (3a+2b)\(^2(3 a-2 b)^2\)

⇒ \(\left(9 a^2+12 a b+4 b^2\right)\left(9 a^2-12 a b+4 b^2\right)\)

And we can simplify the expression by distributing the terms.

⇒ \(\left(9 a^2+12 a b+8 b^2\right)\left(9 a^2-12 a b+8 b^2\right)\)

So, \(81 a^4+64 b^4 \mathrm{can}\) indeed be expressed as

∴ \(\left(9 a^2+12 a b+8 b^2\right)\left(9 a^2-12 a b+8 b^2\right)\)

8. 4(a+3b-c)2 – (4a-3b+2c)2
Solution:

Expand 4(a+3b-c)2

4(a+3b-c)(a+3b-c)

4(a2 + 3ab – ac + 3ab + 9b2 – 3bc – ac – 3bc + c2)

4(a2 + 6ab – 2ac + 9b2 – 6bc + c2)

Expand (4a – 3b + 2c)2

(4a-3b+2c) (4a-3b+2c)

⇒ (4a)2 -2(4a) (3b) + 2(4a)(2c) + (-3b)2 – 2(-3b)(2c)+ (2c)2

⇒ 16a2 – 24ab + 16ac + 9b2 + 12bc + 4c2

Now let’s substitute these expansions back into the original expression:

4(a+3b-c)2 – (4a-3b+2c)2

= 4(a2 + 6ab- 2ac + 9b2 – 6 bc + c2) – (16a2 – 24ab + 16ac + 9b2 + 12bc + 4c2)

= 4a2 + 24ab – 8ac + 36b2 – 24bc + 4c2 – 16ac + 24ab – 16ac – 9b2 – 12bc – 4c2

9. 4a2 – 16a2 + 24ab + 24ab – 8ac – 16ac + 36b2 – 9b2 – 24bc – 12bc + 4c2 – 4c2
Solution:

= -12a2 + 48ab – 24a + 27b2 – 36bc

Now we can factor out common terms from this expression

= -12(a2 – 4ab + 2ac – \(\frac{9}{4}\)b2 + 3bc)

Now observe that a2 – 4ab + 2ac – \(\frac{9}{4}\)b2 + \(\frac{3}{2}\)bc

Can be factored as (a – 2b + \(\frac{3}{2}\)c) (a – 2b + \(\frac{3}{4}\)c)

Thus the expression becomes:

= -12(a – 2b + \(\frac{3}{2}\)c) (a-2b+\(\frac{3}{4}\)c)

Now let’s factor this expression further.

= −12(2a – 4b + 3c)(a − 2b + \(\frac{3}{4}\)c)

= 3(-4a + 8b – 6c)(2a – 4b + \(\frac{3}{2}\)c)

= 3(2a – 4b + \(\frac{3}{2}\)c)(-4a + 8b – 6c)

= 3(2a – 4b + \(\frac{3}{2}\)c)(9b – 2a – 4c)

So, 4(a + 3b – c)2 – (4a – 3b + 2c)2 can be simplified to 3(2a + b) (9b – 20 – 4c).

10. a2 – b2 – c2 + d2+ 2(ad + bc)
Solution:

⇒ a2 – b – c2 + ď2 + 2(ad +bc)

⇒ a2 – b2 – c2 + d + 2ad + 2bc

⇒ a2+ 2ad + d2 – (b2 + c2 – 2bc)

⇒ (a+d)2 – (b-c)2

⇒ {(a+d) + (b-c)} {(a+d) – (b-c)}

⇒ (a+b-c+d) (a-b+c+d)

∴ a2 – b2 – c2 + d2 + 2(ad+bc) = (a + b – c + d) (a – b + c + d)

Class 7 Maths Algebra Solutions WBBSE

11. 7a(7a-2b) + (b+c)(b-c)
Solution:

7a(7a-2b) + (b+c) (b-c)

49a2 – 14ab + b2 – c2

((7a)2 -2(7a)(b) + b2) – c2

(7a-b)2 – c2

(7a-b+c)(7a-b-c)

∴ 7a(7a-2b)+(b+C)(b-c) = (7a-b+c) (7a-b-c)

12. (a+b)(x+cy) – (b+c)(x+ay)
Solution:

(a+b)(x+cy) – (b+c)(x+ay)

{a(x+cy) + b(x+cy)} – {b(x+ay) + c(x+ ay)}

{ax + ayc + bx + byc} – {bx + aby + cx + acy}

ax + ayc + bx + byc – bx – aby – cx – acy

ax + byc -aby -cx

(ax-cx)- by(a-c)

x(a-c)- by(a-c)

(a-c)(x-by)

∴ (a+b)(x+cy) – (b+c)(x+ay) = (a-c)(x-by)

Question 10. Factorize the following

1. a4 + a2b2 + b4
Solution:

⇒ (a2)2+ a2b2 + (b2)2

⇒ (a2 + ab + b2) (a2 – ab + b2)

∴ a4 + a2b2 + b4 = (a2 + ab + b2) (a2– ab + b2)

2. a4 – 2a2b2 – 15b4
Solution:

⇒ a4 – 2a2b2 – 15b4

⇒ a4 – 5a2b2 + 3a2b2 – 15b4

⇒ (a2-5b2) + 3b2(a2-5b2)

⇒ (a2-5b2) (a2+3b2)

∴ a4 – 2a2b2 – 15b4 = (a2-5b2) (a2+3b2)

3. 16 (3x+2y)2 – 9(x-2y)2
Solution:

⇒16(9x2 + 4y2 + 12xy) – 9(x2 + 4xy2 – 4xy)

⇒ (144x2+64y2 + 192xy) (-9x2-36y2+36xy)

⇒ (144x -9x2)+(64y2-36y2) + (192xy+36xy)

⇒ 135x2 + 28y2 + 228xy

⇒ 135x2 + 228xу + 28y2

⇒ 135x2 + 210xy + 18xy + 28y2

⇒ 15x(9x+14y) + 2y(9x+14y)

⇒ (9x+14y) (15x+2y)

∴ 16(3x+2y)2 – 9(x-2y)2= (9x+14y) (15x+2y)

Class 7 Maths Algebra Solutions WBBSE

4. x8-16y8
Solution:

(x4)2 – {(4y)4}2 (a2-b2=(a+b)(a-b))

⇒ {(x)4 + (4y)4} {(x)4-(4y)4}

⇒ {(x2)2+{(2y)2}2} {(x2)2-{(2y)2}2}

⇒ {(x2 + 2y2)2 – 2.x2.2y2} {(x2+ 2y2)x(x2– 2y2)}

⇒ {(x2+2y2)2 – 4x2y2} {(x2+2y2) × (x2-2y2)}

⇒ {(x2+2y2)2-(2xy)2} {(x2+2y2)x(x2-2y2)}

⇒ (x2 + 2x2 + 2xy)(x2 + 2y2 -2xy) (x2+2y2) x (x2-2y2)

∴ x8-16y8 = (x2+2y2+2xy) (x2+2y2-2xy) (x2+2y2)(x2-2y2)

5. (1+x)(y-z)+(1+z)(x−y)
Solution:

⇒ {1(y-z)+x(y-z)} + {1(x-y) + z(x-y)}

⇒ {y-2+xy-zx} + {x-y+2x-zy}

⇒ y-z+xy-zx+x-y+zx-zy

⇒ (xy-zy) + (x-z)

⇒ y((x-z)) + 1(x-z)

⇒ (x-z)(y+1)

∴ (1+x)(y-z) + (1+z)(x-y) = (x-z)(y+1)

 

 

Leave a Comment