Algebra Chapter 6 Factorisation
Question 1. Choose the correct answers
1. The number of prime factors of 20 a²bc³
- 7
- 6
- 9
- 10
Solution:
Prime Factor 20a²bc³
20a²bc³
= 2 х 5 х 2 х а х a x b x c x c x c
= 9
∴ 20a²bc³ = 9
∴ 20a²bc³ = 9 option ‘3’ = 9 corret Answer.
Read and Learn More Class 7 Maths Solutions

2. The sum of factors of (12a4 – 18a2 + 30a) is
- 2a4 – 2a2 + 10
- a4 – a2 + 9
- 2a3 – 2a – 10
- 2a3 + 2a – 10
Solution:
Sum of factors (12a4 – 18a2 + 30a)
12a4 – 18a2 + 30a
6a(2a3 – 3a2 + 5)
cubic polynomial ax3 + bx2 + cx + d
sum of factors = –\(\frac{b}{a}\)
so for 2a3 – 3a2 + 5 = -(\(\frac{-3}{2}\)) = \(\frac{3}{2}\)
Now let’s substitute the sum back to the original equation
6a x \(\frac{3}{2}\) = 2a3 – 2a + 10
∴ The sum of factors of 12a4 – 18a2 + 30a is 2a3 – 2a + 10
∴ The option (1) 2a3 – 2a + 10 is correct answer
Class 7 Algebra Problems With Solutions
3. The Common Factor of 24a3b2c4, 36ab3c3 and 48a4bc2 is
- 6abc
- 12abc2
- 6a3bc2
- 12a2b2c2
Solution:
24a3b2c4 = 2 x 12 x a x a x a x b x b x c x c x c x c
36ab3c3 = 3 x 12 x a x b x b x b x c x c x c
48a4bc2 = 4 х 12 х а х а х ах а х b x c x с
Common Factor 12abc2
∴ Option (2) 12abc2 is the correct answer.
4. The sum of factors of x(x2-q) is
- x + x2 – 29
- x + 9
- x – 9
- 3х
Solution:
x(x2-9)
x(x2-(3)2)
x(x+3)(x-3)
Sum of factors x + x + 3 + x – 3 = 3x
∴ The option (4) 3x is the correct answer.
5. The difference of two factors of (4x2 – 25) is
- 4x
- 4x – 10
- 10
- x – 5
Solution:
(4x2 – 25)
{(2x)2 – (5)2} [a2-b2=(a+b)(a-b)]
(2x+5)(2x-5)
The differences between the factors are
⇒ (2x + 5) – (2x – 5)
⇒ 2x + 5 – 2x + 5
⇒ 10
∴ Option (3) 10 is the correct answer.
Question 2. Write true or False
1. The number of prime factors of 6x is 3
Solution:
Prime factors of 6x 2 x 3 x x =3 → True
2. The sum of factors of (4-x2) is ‘2’
Solution:
⇒ ((2)2 – x2)
⇒ (2 + x) (2 – x)
⇒2 + x + 2 – x
⇒ 4
∴ (4-x2) sum of factors is ‘2’
∴ False
Class 7 Maths Chapter 6 Solved Exercises
3. One of the factors of (a2-a-5a3) is (a2-1-5a)
Solution:
⇒ (a2-a-5a3)
⇒ a(a-1-5a2) is (a2-1-5a)
∴ False
4. The Prime Factors of 18ab2c5 are 2 x 3 x 3 x a, b, C
Solution:
18ab2c5
2 x 3 x 3 x a x b x b x c x c x c x c x c.
prime Factors of 18ab2c5 is 2 x 3 x 3 x a x b x b x c x c x c x c x c.
∴ False
5. The Common Factor of (2a2 + 3a) and (4a – 7a2) is a
Solution:
(2a2 + 3a), (4a – 7a2)
a(2a + 3) – a(-4-7a).
a + 2a + 3 – a – 4 + 7a
3a + 3
3(a+1)
and
(6a – 4)
2(30 + 2)
Here the common factor is ‘a’
∴ True
Question 3. Fill in the Blanks:
1. There is no common Prime factor of 5a2b and 9cd2
Solution: Prime
2. The sum of factors of (3x2-27) is
Solution:
(3x2 – 27)
3(x2 – 9)
3(x2-(3)2)
3(x+3)(x-3)
3 = x + 3 + x – 3
2x + 3
∴ The sum of factors of (3x2 – 27) is (2x + 3)
3. The difference of factors of (9x2 – 16)
Solution:
9x2 – 16
⇒ (3x)2 – (4)2 [a2 – b2 = (a+b) (a-b)]
⇒ (3x + 4) (3x – 4)
Difference of factors we subtract the smaller
Factor from the larger one: (3x+4)- (3x-4)
Expanding this expression: 3x + 4 – 3x + 4 = 8
∴ The difference of factors of (9x2 – 16) is 8
Algebra Formulas For Class 7 Wbbse
Question 4. If a2 – 7a + 12 = (a – 4) (a + p). then find the value of ‘P’
Solution:
a2 – 7a + 12 = (a – 4)(a + p)
⇒ a2 – 7a +12 = a(a + p) – 4(a + p)
⇒ a2 – 7a +12 = a2 + ap – 4a – 4P
⇒ a2 – 7a + 12 = a2 + a(p-4) – 4p
∴ -7a = a(p-4)
⇒ \(\frac{7a}{a}\) = p – 4
-7 = p – 4
-7 + 4 = p
p = -3
and
12 = -4p
p = \(\frac{123}{-4}\)
p = -3
∴ a2 – 7a + 12 = (a – 4)(a + p)
∴ p = -3
Question 5. The product of two expression is \(\left(\frac{81}{a^4}-\frac{b^4}{25}\right)\) if one expresion is \(\left(\frac{a}{a^2}-\frac{b^2}{5}\right)\) then Find the other expression.
Solution:
⇒ \(\left(\frac{81}{a^4}-\frac{b^4}{25}\right)\)
⇒ \(\left\{\left(\frac{a}{a^2}\right)^2-\left(\frac{b^2}{5}\right)^2\right\}\) (\(a^2-b^2=(a+b)(a-b)\))
⇒ \(\left(\frac{9}{a^2}+\frac{b^2}{5}\right),\left(\frac{a}{a^2}-\frac{b^2}{5}\right)\)
The other expression is \(\left(\frac{9}{a^2}+\frac{b^2}{5}\right)\)
Question 6. Find the value of ‘p’ in expression (x2-px-6) if one of the Factors is (x-3) Find also another factor.
Solution:
(x2 – px – 6)
given that one factor is (x – 3) = 0
x = 3 Substitute in the above equation.
((3)2 – p(3)-6)= 0
9 – 3p – 6 = 0
-3P = -9 + 6
-3p = -3
p = \(\frac{-3}{-3}\)
∴ p = 1
(x2 – px – 6) = 0
(x2 – (1)x – 6) = 0
x2 – x – 6 = 0
x2 + 2x – 3x – 6 = 0
x(x+2)-3(x+2)=0
∴ (x+2)=0, (x-3)=0
x = -2, x = 3
∴ The value of p is 1
The other factor is (x+2)=0
∴ x = -2, and x = 3
WBBSE Maths Study Material Class 7
Question 7. Express \(\left(\frac{a}{b}-\frac{b}{a}\right)\) as a product of two expressions such that the sum of the expression is \(\left(\frac{a}{b}+\frac{b}{a}\right)\)
Solution:
⇒ \(\left(\frac{a}{b}-\frac{b}{a}\right)\)
Some of the expression is \(\left(\frac{a}{b}+\frac{b}{a}\right)\)
This can be be written as 1 + \(\frac{b}{a}\) x (\(\frac{a}{b}\) + 1)
Now let’s verify if the given expression can be factored as the product of two expressions whose sum is \(\left(\frac{a}{b}+\frac{b}{a}\right)\):
⇒ \(\left(\frac{a}{b}-\frac{b}{a}\right)\)
= \(\frac{a^2-b^2}{a b}\)
= \(\frac{(a+b)(a-b)}{a b}\)
= \(\frac{a-b}{b} \times \frac{a+b}{a}\)
= \(\left(\frac{a}{b}-1\right)\left(1+\frac{b}{a}\right)\)
∴ So \(\left(\frac{a}{b}-\frac{b}{a}\right)\) can be expressed as the product of (\(\frac{a}{b}\)-1) and (1 + \(\frac{b}{a}\)), and their sum is \(\frac{a}{b}\) + \(\frac{b}{a}\)
Question 8. Find the sum of the Factors of the expression (3a2 – b2 – c2 – 2ab – 2bc – 2ca)
Solution:
(3a2 – b – c2 – 2ab – 2bc – 2ca)
⇒ 3 + 3 + a + a – b – b – c – 2a + b − 2 + b + c – 2 + c + a
⇒ 6 + 4а – 6
⇒ 4a.
∴ The sum of factors of the expression (3a2-b2-c2-2ab-2bc-2ca) = 4a
Question 9. Resolve into factors.
1. \(\frac{a^4}{16}-\frac{81}{b^4}\)
Solution:
⇒ \(\frac{a^4}{16}-\frac{81}{b^4}\)
⇒ \(\left(\frac{a^2}{4}\right)^2-\left(\frac{9}{b^2}\right)^2\) (\(a^2-b^2=(a+b)(a-b)\))
⇒ \(\left(\frac{a^2}{4}+\frac{9}{b^2}\right)\left(\frac{a^2}{4}-\frac{9}{b^2}\right)\)
⇒ \(\left(\frac{a^2}{4}+\frac{9}{b^2}\right)\left(\left(\frac{a}{2}\right)^2-\left(\frac{3}{b}\right)^2\right)\)
⇒ \(\left(\frac{a^2}{4}+\frac{9}{b^2}\right)\left(\frac{a}{2}+\frac{3}{b}\right)\left(\frac{a}{2}-\frac{3}{b}\right)\)
∴ \(\frac{a^4}{16}-\frac{81}{b^4}=\left(\frac{a^2}{4}+\frac{9}{b^2}\right)\left(\frac{a}{2}+\frac{3}{b}\right)\left(\frac{a}{2}-\frac{3}{b}\right)\)
2. \(a^4-5 a^2+6 a\)
Solution:
⇒ \(a^4-5 a^2+6 a\)
⇒ \(a\left(a^3-5 a+6\right)\)
∴ \(a^4-5 a^2+6 a=a\left(a^3-5 a+6\right)\)
3. \(a^2-b^2+18 b-81\)
Solution:
⇒ \(a^2-b^2+18 b-81\)
⇒ \(a^2-\left(b^2-18 b+81\right)\)
⇒ \(a^2-(b-9)^2\)
(a+b-a)(a-b+9)
∴ \(a^2-b^2+18 b-81=(a+b-9)(a-b+9)\)
WBBSE Maths Study Material Class 7
4. 3x2 – xy – 4y2
Solution:
3x2 -xy – 4y2
⇒ 3x2 + 3xy – 4xy – 4y2
⇒ 3x(x+y) -4(x+y)
⇒ (x+y) (3x-4)
∴ 3x2 – xy – 4y2 = (x+4) (3x-4)
5. 18ax2 – 128a(x-2y)2
Solution:
18ax2 – 128a(x-2y)2
a[18x2 – 128(x-2y)2]
6. 18ax2 – 128a(x – 2y)2
Solution:
⇒ \(2 a \cdot 9 x^2-2 a \cdot 64(x-2 y)^2\)
⇒ \(2 a \cdot 9 x^2-2 a \cdot 64\left(x^2-4 x y+4 y^2\right)\)
⇒ \(2 a\left(9 x^2-64 x^2+256 x y-256 y^2\right)\)
⇒ \(2 a\left(9 x^2-64 x^2\right)+2 a\left(256 x y-256 y^2\right)\)
⇒ \(2 a\left(-55 x^2+256 x y-256 y^2\right)\)
⇒ \(2 a\left(-11 x^2+16 x y-16 y^2\right)\)
Now Let’s re-arrange the terms:
⇒ \(2 a\left(16 x y-11 x^2-16 y^2\right)\)
⇒ \(2 a\left(16 y(11 x-16 y)-11 x^2\right)\)
⇒ \(2 a(11 x-16 y)(16 y-5 x)\)
So, \(18 a x^2-128 a(x-2 y)^2\) can be simplified to \(2 a(11 x-6 y)(16 y-5 x)\).
7. \(81 a^4+643^4\)
Solution:
⇒ \(81 a^4+64 b^4\)
⇒ (3a+2b)(3a-2b)(3a+2b)(3a-2b)
⇒ (3a+2b)\(^2(3 a-2 b)^2\)
⇒ \(\left(9 a^2+12 a b+4 b^2\right)\left(9 a^2-12 a b+4 b^2\right)\)
And we can simplify the expression by distributing the terms.
⇒ \(\left(9 a^2+12 a b+8 b^2\right)\left(9 a^2-12 a b+8 b^2\right)\)
So, \(81 a^4+64 b^4 \mathrm{can}\) indeed be expressed as
∴ \(\left(9 a^2+12 a b+8 b^2\right)\left(9 a^2-12 a b+8 b^2\right)\)
8. 4(a+3b-c)2 – (4a-3b+2c)2
Solution:
Expand 4(a+3b-c)2
4(a+3b-c)(a+3b-c)
4(a2 + 3ab – ac + 3ab + 9b2 – 3bc – ac – 3bc + c2)
4(a2 + 6ab – 2ac + 9b2 – 6bc + c2)
Expand (4a – 3b + 2c)2
(4a-3b+2c) (4a-3b+2c)
⇒ (4a)2 -2(4a) (3b) + 2(4a)(2c) + (-3b)2 – 2(-3b)(2c)+ (2c)2
⇒ 16a2 – 24ab + 16ac + 9b2 + 12bc + 4c2
Now let’s substitute these expansions back into the original expression:
4(a+3b-c)2 – (4a-3b+2c)2
= 4(a2 + 6ab- 2ac + 9b2 – 6 bc + c2) – (16a2 – 24ab + 16ac + 9b2 + 12bc + 4c2)
= 4a2 + 24ab – 8ac + 36b2 – 24bc + 4c2 – 16ac + 24ab – 16ac – 9b2 – 12bc – 4c2
9. 4a2 – 16a2 + 24ab + 24ab – 8ac – 16ac + 36b2 – 9b2 – 24bc – 12bc + 4c2 – 4c2
Solution:
= -12a2 + 48ab – 24a + 27b2 – 36bc
Now we can factor out common terms from this expression
= -12(a2 – 4ab + 2ac – \(\frac{9}{4}\)b2 + 3bc)
Now observe that a2 – 4ab + 2ac – \(\frac{9}{4}\)b2 + \(\frac{3}{2}\)bc
Can be factored as (a – 2b + \(\frac{3}{2}\)c) (a – 2b + \(\frac{3}{4}\)c)
Thus the expression becomes:
= -12(a – 2b + \(\frac{3}{2}\)c) (a-2b+\(\frac{3}{4}\)c)
Now let’s factor this expression further.
= −12(2a – 4b + 3c)(a − 2b + \(\frac{3}{4}\)c)
= 3(-4a + 8b – 6c)(2a – 4b + \(\frac{3}{2}\)c)
= 3(2a – 4b + \(\frac{3}{2}\)c)(-4a + 8b – 6c)
= 3(2a – 4b + \(\frac{3}{2}\)c)(9b – 2a – 4c)
So, 4(a + 3b – c)2 – (4a – 3b + 2c)2 can be simplified to 3(2a + b) (9b – 20 – 4c).
10. a2 – b2 – c2 + d2+ 2(ad + bc)
Solution:
⇒ a2 – b – c2 + ď2 + 2(ad +bc)
⇒ a2 – b2 – c2 + d + 2ad + 2bc
⇒ a2+ 2ad + d2 – (b2 + c2 – 2bc)
⇒ (a+d)2 – (b-c)2
⇒ {(a+d) + (b-c)} {(a+d) – (b-c)}
⇒ (a+b-c+d) (a-b+c+d)
∴ a2 – b2 – c2 + d2 + 2(ad+bc) = (a + b – c + d) (a – b + c + d)
Class 7 Maths Algebra Solutions WBBSE
11. 7a(7a-2b) + (b+c)(b-c)
Solution:
7a(7a-2b) + (b+c) (b-c)
49a2 – 14ab + b2 – c2
((7a)2 -2(7a)(b) + b2) – c2
(7a-b)2 – c2
(7a-b+c)(7a-b-c)
∴ 7a(7a-2b)+(b+C)(b-c) = (7a-b+c) (7a-b-c)
12. (a+b)(x+cy) – (b+c)(x+ay)
Solution:
(a+b)(x+cy) – (b+c)(x+ay)
{a(x+cy) + b(x+cy)} – {b(x+ay) + c(x+ ay)}
{ax + ayc + bx + byc} – {bx + aby + cx + acy}
ax + ayc + bx + byc – bx – aby – cx – acy
ax + byc -aby -cx
(ax-cx)- by(a-c)
x(a-c)- by(a-c)
(a-c)(x-by)
∴ (a+b)(x+cy) – (b+c)(x+ay) = (a-c)(x-by)
Question 10. Factorize the following
1. a4 + a2b2 + b4
Solution:
⇒ (a2)2+ a2b2 + (b2)2
⇒ (a2 + ab + b2) (a2 – ab + b2)
∴ a4 + a2b2 + b4 = (a2 + ab + b2) (a2– ab + b2)
2. a4 – 2a2b2 – 15b4
Solution:
⇒ a4 – 2a2b2 – 15b4
⇒ a4 – 5a2b2 + 3a2b2 – 15b4
⇒ (a2-5b2) + 3b2(a2-5b2)
⇒ (a2-5b2) (a2+3b2)
∴ a4 – 2a2b2 – 15b4 = (a2-5b2) (a2+3b2)
3. 16 (3x+2y)2 – 9(x-2y)2
Solution:
⇒16(9x2 + 4y2 + 12xy) – 9(x2 + 4xy2 – 4xy)
⇒ (144x2+64y2 + 192xy) (-9x2-36y2+36xy)
⇒ (144x -9x2)+(64y2-36y2) + (192xy+36xy)
⇒ 135x2 + 28y2 + 228xy
⇒ 135x2 + 228xу + 28y2
⇒ 135x2 + 210xy + 18xy + 28y2
⇒ 15x(9x+14y) + 2y(9x+14y)
⇒ (9x+14y) (15x+2y)
∴ 16(3x+2y)2 – 9(x-2y)2= (9x+14y) (15x+2y)
Class 7 Maths Algebra Solutions WBBSE
4. x8-16y8
Solution:
(x4)2 – {(4y)4}2 (a2-b2=(a+b)(a-b))
⇒ {(x)4 + (4y)4} {(x)4-(4y)4}
⇒ {(x2)2+{(2y)2}2} {(x2)2-{(2y)2}2}
⇒ {(x2 + 2y2)2 – 2.x2.2y2} {(x2+ 2y2)x(x2– 2y2)}
⇒ {(x2+2y2)2 – 4x2y2} {(x2+2y2) × (x2-2y2)}
⇒ {(x2+2y2)2-(2xy)2} {(x2+2y2)x(x2-2y2)}
⇒ (x2 + 2x2 + 2xy)(x2 + 2y2 -2xy) (x2+2y2) x (x2-2y2)
∴ x8-16y8 = (x2+2y2+2xy) (x2+2y2-2xy) (x2+2y2)(x2-2y2)
5. (1+x)(y-z)+(1+z)(x−y)
Solution:
⇒ {1(y-z)+x(y-z)} + {1(x-y) + z(x-y)}
⇒ {y-2+xy-zx} + {x-y+2x-zy}
⇒ y-z+xy-zx+x-y+zx-zy
⇒ (xy-zy) + (x-z)
⇒ y((x-z)) + 1(x-z)
⇒ (x-z)(y+1)
∴ (1+x)(y-z) + (1+z)(x-y) = (x-z)(y+1)