WBBSE Class 9 Algebra Chapter 1 Laws Of Indices Multiple Choice Questions
Example 1. The value of (0.243)0.2 x (10)0.6 is
- 0.3
- 3
- 0.9
- 9
Solution: The correct answer is 2. 3
= \(\left(\frac{243}{1000}\right)^{\frac{2}{10}} \times(10)^{\frac{6}{10}}\)
= \(3^{8 \times \frac{2}{102}} \times 10^{\frac{2}{105}(-3)} \times 10^{\frac{3}{5}}\)
= \(3 \times 10^{-\frac{2}{5}+\frac{3}{5}}\)
= \(3 \times 10^0=3 \times 1=3\)
The value of (0.243)0.2 x (10)0.6 is = \(3 \times 10^0=3 \times 1=3\)
Read and Learn More WBBSE Class 9 Maths Multiple Choice Questions
Example 2. The value of \(2^{\frac{1}{2}} \times 2^{-\frac{1}{2}} \times(16)^{\frac{1}{2}}\) is
- 1
- 2
- 4
- \(\frac{1}{2}\)
Solution: The correct answer is 3. 4
⇒ \(2^{\frac{1}{2}} \times 2^{-\frac{1}{2}} \times 2^2 4 \times \frac{1}{2}=2^{\frac{1}{2}-\frac{1}{2}+2}=2^2=4\)
Example 3. If 4x = 83 then value of x is
- \(\frac{3}{2}\)
- \(\frac{9}{2}\)
- 3
- 9
Solution: The correct answer is 2. \(\frac{9}{2}\)
22x = 23×3
or, 2x = 9 or, x = \(\frac{9}{2}\)

Example 4. If 20-x = \(\frac{1}{7}\) then the value of (20)2x is
- \(\frac{1}{49}\)
- 7
- 3
- 9
Solution: 20x = 7
or, (20)2x = 72 = 49
∴ The correct answer is 3. 3
Example 5. If 4 x 5x = 500 then value of xx is
- 8
- 1
- 64
- 27
Solution: The correct answer is 4. 27
⇒ 5x = 125
or 5x = 53, x = 3
∴ xx = 33 = 27
Example 6. Which one of the following is the value of \(2^{\frac{1}{2}} \times 4^{\frac{1}{4}} \times 16^{-\frac{1}{4}}\)?
- 1
- 2
- 4
- \(\frac{1}{2}\)
Solution: The correct answer is 1. 1
= \(2^{\frac{1}{2}} \times\left(2^2\right)^{\frac{1}{4}} \times\left(2^4\right)^{-\frac{1}{4}}=2^{\frac{1}{2}+\frac{2}{4}+\frac{-4}{4}}\)
= \(2^{\frac{1}{2}+\frac{1}{2}-1}=2^0=1\)
Example 7. If \(4^x=8^{\frac{1}{3}}\) then x = ?
- \(\frac{2}{3}\)
- \(\frac{3}{2}\)
- 2
- \(\frac{1}{2}\)
Solution: The correct answer is 4. \(\frac{1}{2}\)
⇒ \(4^x=8^{\frac{1}{3}}\)
⇒ or, \(\left(2^2\right)^x=\left(2^3\right)^{\frac{1}{3}} \quad \text { or, } 2^{2 x}=2^1\)
∴ 2x = 1 x = \(\frac{1}{2}\)
Example 8. If 2x+1 +2x-2 = 9, then x =?
- 1
- 2
- 0
- \(\frac{1}{2}\)
Solution: The correct answer is 2. 2
⇒ \(2^{x+1}+2^{x-2}=9\)
⇒ or, \(2^x\left(2^1+2^{-2}\right)=9\)
⇒ or, \(2^x\left(2+\frac{1}{2^2}\right)=9, \quad 2^x\left(\frac{9}{4}\right)=9\)
⇒ or, \(2^x=2^2\), x = 2
Example 9. \(\left(\frac{625}{81}\right)^{-\frac{3}{4}}=?\)
- \(\frac{3}{5}\)
- \(\frac{9}{25}\)
- \(\frac{27}{125}\)
- \(\frac{81}{625}\)
Solution: The correct answer is 3. \(\frac{27}{125}\)
\(\left(\frac{5^4}{3^4}\right)^{-\frac{3}{4}}=\frac{5^{4 \times\left(-\frac{3}{4}\right)}}{4 \times\left(-\frac{3}{4}\right)}\)
= \(\frac{5^{-3}}{3^{-3}}=\left(\frac{3}{5}\right)^3=\frac{27}{125}\)
Example 10. \(\sqrt[3]{\left(\frac{1}{64}\right)^{\frac{1}{2}}}=?\)
- 1
- \(\frac{1}{2}\)
- \(\frac{1}{3}\)
- \(\frac{1}{6}\)
Solution: The correct answer is \(\frac{1}{2}\)
\(\left(\frac{1}{6^4}\right)^{\frac{1}{6}}=\left(2^{-6}\right)^{\frac{1}{6}}=2^{-1}=\frac{1}{2}\)