WBBSE Class 9 Maths Algebra Chapter 6 Logarithm Multiple Choice Questions
Example 1. If log√x0.25 = 4 then the value of x
- 0.5
- 0.25
- 4
- 16
Solution: The correct answer is 1. 0.5
⇒ (√x)4 = 0·25
⇒ \(x^{\frac{1}{2} \times 4}=(0 \cdot 5)^2\)
∴ x = 0.5
Read and Learn More WBBSE Class 9 Maths Multiple Choice Questions
The value of x = 0.5
Example 2. If log10(7x – 5) = 2, then the value of x
- 10
- 12
- 15
- 18
Solution: The correct answer is 3. 15
⇒ 102 = 7x – 5
⇒ or, 7x = 100+ 5
⇒ or, x = 15
The value of x = 15
Example 3. If log23 = a, then log827 =?
- 3a
- \(\frac{1}{a}\)
- 2a
- a
Solution: The correct answer is 4. a
⇒ \(\log _8 27=\frac{\log _2 27}{\log _2 8}\)
= \(\frac{3 \log _2 3}{3 \log _2 2}=\frac{a}{1}=a\)
log827 = \(\frac{3 \log _2 3}{3 \log _2 2}=\frac{a}{1}=a\)

Example 4. If logx√2 = a then, the value of logx2√2 is
- \(\frac{a}{3}\)
- a
- 2a
- 3a
Solution: The correct answer is 1. \(\frac{a}{3}\)
⇒ x = (√2)a
⇒ or, \(\log _{2 \sqrt{2}} x=\log _{2 \sqrt{2}}(\sqrt{2})^a=a \log _{2 \sqrt{2}} \sqrt{2}\)
= \(a \frac{\log _b \sqrt{2}}{\log _b 2 \sqrt{2}}(b \neq 0,1)=a \frac{\log _b(2)^{\frac{1}{2}}}{\log _b(2)^{\frac{3}{2}}}\)
= \(a \cdot \frac{\frac{1}{2} \log _b 2}{\frac{3}{2} \log _b 2}=\frac{a}{3}\)
The value of logx2√2 = \(a \cdot \frac{\frac{1}{2} \log _b 2}{\frac{3}{2} \log _b 2}=\frac{a}{3}\)
Example 5. If \(\log _x \frac{1}{3}=-\frac{1}{3}\) then the value of x is
- 27
- 9
- 3
- \(\frac{1}{27}\)
Solution: The correct answer is 1. 27
⇒ \((x)^{-\frac{1}{3}}=\frac{1}{3}\)
⇒ or, \(x=\left(\frac{1}{3}\right)^{-3}=3^3=27\)
The value of x is \(x=\left(\frac{1}{3}\right)^{-3}=3^3=27\)
Example 6. \(\log _3\left(\frac{1}{81}\right)=?\)
- -1
- -2
- -3
- -4
Solution: The correct answer is 1. -1
⇒ Let \(\log _3\left(\frac{1}{81}\right)=x\)
∴ 3x = 3-4, x = -4
Example 7. If log√7 = x then the value of x is
- 3
- 6
- 9
- 12
Solution: The correct answer is 2. 6
⇒ (√7)x = 243 =73
⇒ or, \(7^{\frac{x}{2}}=7^3\)
⇒ x = 6
The value of x is 6.
Example 8. State which of the following is the value of log0.008√5
- –\(\frac{1}{6}\)
- –\(\frac{1}{3}\)
- –\(\frac{1}{2}\)
- –\(\frac{1}{8}\)
Solution: The correct answer is 1. –\(\frac{1}{6}\)
⇒ Let 0.008√5 = x
⇒ \((008)^x=\sqrt{5}\)
⇒ or, \(5^{-3 x}=5^{\frac{1}{2}} \quad x=-\frac{1}{6}\)
The value of log0.008√5 \(5^{-3 x}=5^{\frac{1}{2}} \quad x=-\frac{1}{6}\)
Example 9. \(\log _4 2^{-8}=\)?
- – 4
- – 3
- – 2
- – 1
Solution: The correct answer is 1. -4
⇒ Let \(\log _4 2^{-8}=x\)
∴ \(4^x=2^{-8}\)
⇒ or, 2x = -8, x = -4
Example 10. If the logarithm of 5832 be 6, then the base is
- 2√3
- 3
- 2
- 3√2
Solution: The correct answer is 4. 3√2
⇒ Let logx5832 = 6
⇒ x6 = 5832 = 36, 23
⇒ or, x6 =(3√2)6,
⇒ x = 3√2
The base is x = 3√2