WBBSE Class 9 Maths Algebra Chapter 6 Logarithm Multiple Choice Questions

WBBSE Class 9 Maths Algebra Chapter 6 Logarithm Multiple Choice Questions

Example 1. If log√x0.25 = 4 then the value of x

  1. 0.5
  2. 0.25
  3. 4
  4. 16

Solution: The correct answer is 1. 0.5

(√x)4 = 0·25

\(x^{\frac{1}{2} \times 4}=(0 \cdot 5)^2\)

∴ x = 0.5

Read and Learn More WBBSE Class 9 Maths Multiple Choice Questions

The value of x = 0.5

Example 2. If log10(7x – 5) = 2, then the value of x

  1. 10
  2. 12
  3. 15
  4. 18

Solution: The correct answer is 3. 15

102 = 7x – 5

or, 7x = 100+ 5

or, x = 15

The value of x = 15

Example 3. If log23 = a, then log827 =?

  1. 3a
  2. \(\frac{1}{a}\)
  3. 2a
  4. a

Solution: The correct answer is 4. a

\(\log _8 27=\frac{\log _2 27}{\log _2 8}\)

 

= \(\frac{3 \log _2 3}{3 \log _2 2}=\frac{a}{1}=a\)

log827 = \(\frac{3 \log _2 3}{3 \log _2 2}=\frac{a}{1}=a\)

WBBSE Class 9 Maths Algebra Chapter 6 Logarithm Multiple Choice Questions

Example 4. If logx√2 = a then, the value of logx2√2 is

  1. \(\frac{a}{3}\)
  2. a
  3. 2a
  4. 3a

Solution: The correct answer is 1. \(\frac{a}{3}\)

x = (√2)a

or, \(\log _{2 \sqrt{2}} x=\log _{2 \sqrt{2}}(\sqrt{2})^a=a \log _{2 \sqrt{2}} \sqrt{2}\)

= \(a \frac{\log _b \sqrt{2}}{\log _b 2 \sqrt{2}}(b \neq 0,1)=a \frac{\log _b(2)^{\frac{1}{2}}}{\log _b(2)^{\frac{3}{2}}}\)

= \(a \cdot \frac{\frac{1}{2} \log _b 2}{\frac{3}{2} \log _b 2}=\frac{a}{3}\)

The value of logx2√2 = \(a \cdot \frac{\frac{1}{2} \log _b 2}{\frac{3}{2} \log _b 2}=\frac{a}{3}\)

WBBSE Solutions For Class 9 Fundamentals Of HistoryWBBSE Class 9 English Functional Grammar
WBBSE Class 9 Fundamentals Of History Long Answer QuestionsWBBSE Class 9 English Reading Skill
WBBSE Class 9 Fundamentals Of History Short Answer QuestionsWBBSE Class 9 English Writing Skill
WBBSE Class 9 Fundamentals Of History Very Short Answer QuestionsWBBSE Class 9 Maths Multiple Choice Questions
WBBSE Class 9 Fundamentals Of History Multiple Choice QuestionsWBBSE Solutions For Class 9 Maths
WBBSE Notes For Class 9 Geography and Environment

 

Example 5. If \(\log _x \frac{1}{3}=-\frac{1}{3}\) then the value of x is

  1. 27
  2. 9
  3. 3
  4. \(\frac{1}{27}\)

Solution: The correct answer is 1. 27

\((x)^{-\frac{1}{3}}=\frac{1}{3}\)

 

or, \(x=\left(\frac{1}{3}\right)^{-3}=3^3=27\)

The value of x is \(x=\left(\frac{1}{3}\right)^{-3}=3^3=27\)

Example 6. \(\log _3\left(\frac{1}{81}\right)=?\)

  1. -1
  2. -2
  3. -3
  4. -4

Solution: The correct answer is 1. -1

Let \(\log _3\left(\frac{1}{81}\right)=x\)

∴ 3x = 3-4, x = -4

Example 7. If log√7 = x then the value of x is

  1. 3
  2. 6
  3. 9
  4. 12

Solution: The correct answer is 2. 6

(√7)x = 243 =73

or, \(7^{\frac{x}{2}}=7^3\)

x = 6

The value of x is 6.

Example 8. State which of the following is the value of log0.008√5

  1. –\(\frac{1}{6}\)
  2. –\(\frac{1}{3}\)
  3. –\(\frac{1}{2}\)
  4. –\(\frac{1}{8}\)

Solution: The correct answer is 1. –\(\frac{1}{6}\)

Let 0.008√5 = x

⇒ \((008)^x=\sqrt{5}\)

or, \(5^{-3 x}=5^{\frac{1}{2}} \quad x=-\frac{1}{6}\)

The value of log0.008√5 \(5^{-3 x}=5^{\frac{1}{2}} \quad x=-\frac{1}{6}\)

Example 9. \(\log _4 2^{-8}=\)?

  1. – 4
  2. – 3
  3. – 2
  4. – 1

Solution: The correct answer is 1. -4

Let \(\log _4 2^{-8}=x\)

∴ \(4^x=2^{-8}\)

or, 2x = -8, x = -4

Example 10. If the logarithm of 5832 be 6, then the base is

  1. 2√3
  2. 3
  3. 2
  4. 3√2

Solution: The correct answer is 4. 3√2

Let logx5832 = 6

x6 = 5832 = 36, 23

or, x6 =(3√2)6,

x = 3√2

The base is x = 3√2

Leave a Comment