WBBSE Class 9 Maths Coordinate Geometry Chapter 2 Internal And External Division Of Straight Line Segment Multiple Choice Questions
Example 1. The midpoint of line segment joining two points (l, 2m), (-l + 2m, 2l – 2m) is
- (l, m)
- (2,- m)
- (m, -l)
- (m, l)
Solution: \(\left(\frac{l-l+2 m}{2}, \frac{2 m+2 l-2 m}{2}\right)\) = (m, l)
Example 2. The abscissa at the point P which divides the line segment joining two points A (1, 5), and B (-4, 7) internally in the ratio 2: 3 is
- 1
- 11
- 1
- -11
Solution: \(\left(\frac{2 \times(-4)+3 \times 1}{2+3}\right)=\frac{-8+3}{5}=-1\)
Read and Learn More WBBSE Class 9 Maths Multiple Choice Questions
Example 3. The coordinates of the end points of a diameter of a circle are (7, 9) and (-1,-3). The coordinates of the centre is
- (3, 3)
- (4, 6)
- (3, -3)
- (4, -6)
Solution: Centre = \(\left(\frac{7-1}{2}, \frac{9-3}{2}\right)\) = (3, 3)
Example 4. A point which divides the line segment joining two points (2, -5), (-3, -2) externally in 4: 3 The coordinates of point is
- -18
- -7
- 18
- 7
Solution: Co-ordinates = \(\left(\frac{-3 \times 4-3 \times 2}{4-3}, \frac{4(-2)-3(-5)}{4-3}\right)\) = (-18, 7)

Example 5. If the points P (1, 2), Q (4, 6), R (5, 7), and S (X, Y) are the vertices of a parallelogram PQRS then
- x = 2, y = 4
- x = 3, y = 4
- x = 2, y = 3
- x = 2, y = 5
Solution: Midpoint of PR = \(\left(\frac{5+1}{2}, \frac{7+2}{2}\right)=\left(3, \frac{9}{2}\right)\)
Midpoint of QS = \(=\left(\frac{4+x}{2}, \frac{6+y}{2}\right)\)
∴ \(\frac{4+y}{2}=3 \Rightarrow x=2, \quad \frac{9}{2}=\frac{6+y}{2}, \quad y=3\)
Example 6. The coordinates of the midpoint of the line segment joining the points (a + b, a- b) and (a – b, a + b) is
- (a, b)
- (a, a)
- (b, b)
- (2a, 2b)
Solution: \(\left(\frac{a+b+a-b}{2}, \frac{a-b+a+b}{2}\right)=(a, a)\)
Example 7. The coordinates of the midpoint of the line segment joining the points (1 – a, -2a), (2a – 2, a + 1) are
- \(\left(\frac{a-1}{2}, \frac{1-a}{2}\right)\)
- \(\left(\frac{2 a-1}{2}, \frac{1-2 a}{2}\right)\)
- \(\left(\frac{a+3}{2}, \frac{-3 a+1}{2}\right)\)
- \(\left(\frac{a+1}{2}, \frac{2 a+1}{2}\right)\)
Solution: \(\left(\frac{1-a+2 a-2}{2}, \frac{-2 a+a+1}{2}\right)=\left(\frac{a-1}{2}, \frac{1-a}{2}\right)\)
Example 8. The coordinates of the midpoint P of the line segment joining the points A (-m, 6), and B (4, n) are (-1, -1). The value of m and n are
- 6, 8
- -6, -8
- 6, -8,
- -6, 8
Solution: \(\frac{-m+4}{2}=-1, m=4+2=6, \quad \frac{6+n}{2}=-1, n=-8\)