Trigonometry Chapter 2 Trigonometric Ratios And Trigonometric Identities
Trigonometric ratios:
⇔ In ΔABC, ∠ABC = 90° and ∠ACB = θ.

⇔ sin θ = \(\frac{\text { perpendicular }}{\text { hypotenuse }}=\frac{\mathrm{AB}}{\mathrm{AC}}\)
⇔ cos θ = \(\frac{\text { base }}{\text { hypotenuse }}=\frac{\mathrm{BC}}{\mathrm{AC}}\)
⇔ tan θ = \(\frac{\text { perpendicular }}{\text { base }}=\frac{\mathrm{AB}}{\mathrm{BC}}\)
⇔ cosec θ = \(\frac{\text { hypotenuse }}{\text { perpendicular }}=\frac{\mathrm{AC}}{\mathrm{AB}}\)
⇔ sec θ = \(\frac{\text { hypotenuse }}{\text { base }}=\frac{\mathrm{AC}}{\mathrm{BC}}\)
⇔ cot θ = \(\frac{\text { base }}{\text { perpendicular }}=\frac{\mathrm{BC}}{\mathrm{AB}}\)
∴ sin θ = \(\frac{1}{cosec \theta}\)
Read and Learn More WBBSE Solutions for Class 10 Maths
⇒ sin θ.cosec θ = 1
⇔ cos θ = \(\frac{1}{sec \theta}\)
⇒ cos θ.sec θ = 1
⇔ tan θ = \(\frac{1}{cot \theta}\)
⇒ tan θ.cot θ = 1
⇔ \(\tan \theta=\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{\frac{\mathrm{AB}}{\mathrm{AC}}}{\frac{\mathrm{BC}}{\mathrm{CA}}}=\frac{\sin \theta}{\cos \theta}\)
⇔ \(\cot \theta=\frac{\cos \theta}{\sin \theta}\)
Class 10 Maths Trigonometry Chapter 2 Solutions
Some Trigonometric identities of an acute angle:
- sin2 θ+ cos2 θ = 1
- sec2 θ= 1 + tan2 θ
- cosec2 θ = 1 + cot2 θ
Following tables gives the values of trigonometric ratios :


Trigonometry Chapter 2 Trigonometric Ratios And Trigonometric Identities True Or False
Example 1. The value of tan A is always greater than 1.
Solution:

tan A = \(\frac{\mathrm{BC}}{\mathrm{AC}}\)
tan A = \(\frac{\mathrm{BC}}{\mathrm{BC}}\) [If BC = AC] = 1
tan A < 1 [If BC < AC]
tan A > 1 [If BC > AC]
So the statement is false.
Example 2. The value of cot A is always less tan 1.
Solution:

cot A = \(\frac{\mathrm{AC}}{\mathrm{BC}}\)
cotA = \(\frac{\mathrm{AC}}{\mathrm{AC}}\) [If AC = BC]
cot A = 1
cot A < 1 [If AC < BC]
cot A > 1 [If AC > BC]
∴ So the statement is false.
Wbbse Class 10 Maths Trigonometry Solutions
Example 3. For an angle θ, it may be possible that, sin θ = \(\frac{4}{3}\)
Solution:

sin θ = \(\frac{\mathrm{AB}}{\mathrm{AC}}\)
In a right-angled triangle hypotenuse is always greater than each of other two sides
∴ AB < AC i.e. \(\frac{\mathrm{AB}}{\mathrm{AC}}\) < 1
∴ sin θ < 1
∴ The statement is false.
Example 4. For an angle α, it may be possible that, sec α = \(\frac{12}{5}\)
Solution:

sec α = \(\frac{\mathrm{AC}}{\mathrm{BC}}\)
as AC > BC [hypotenuse > side]
i.e. \(\frac{\mathrm{AC}}{\mathrm{BC}}\) > 1 ∴ sec α > 1
∴ The statement is true.
Heights And Distances Class 10 Solutions
Example 5. For an angle β, it may be possible that, cosec β= \(\frac{5}{13}\)
Solution:

cosec β = \(\frac{\mathrm{AC}}{\mathrm{AB}}\)
and AC > AB i.e. \(\frac{\mathrm{AC}}{\mathrm{AB}}\) > 1 ∴ cosec β > 1
∴ The statement is false.
Example 6. For an angle θ, is may be possible that, cos θ = \(\frac{3}{5}\)
Solution:

cos θ = \(\frac{\mathrm{BC}}{\mathrm{AC}}\)
BC < AC
i.e, \(\frac{\mathrm{BC}}{\mathrm{AC}}\) < 1 ∴ cos θ < 1
∴ The statement is true.
Example 7. If 0° ≤ α ≤ 90°, then the least value of (sec2 α + cos2 α) is 2.
Solution: sec2 α + cos2 α
= \(\frac{1}{\cos ^2 \alpha}+\cos ^2 \alpha\)
= \(\left(\frac{1}{\cos \alpha}-\cos \alpha\right)^2+2 \cdot \frac{1}{\cos \alpha} \cdot \cos \alpha\)
= \(\left(\frac{1}{\cos \alpha}-\cos \alpha\right)^2+2\)
\(\text { as } 0^{\circ} \leq \alpha \leq 90^{\circ}\)
∴ \(\left(\frac{1}{\cos \alpha}-\cos \alpha\right)^2 \geq 0\)
∴ The lease value of (sec2 α + cos2 α)
∴ The statements is true.
Example 8. The value of (cos 0° x cos 1° x cos 2° x cos 3° x…..x cos 90°) is 1.
Solution: (cos 0° x cos 1° x cos 2° x cos 3° x …… x cos 90°)
= cos 0° x cos 1° x cos 2° x ……. x 0 = 0
∴ The statement is false.
Class 10 Trigonometry Chapter 2 Solved Examples
Trigonometry Chapter 2 Trigonometric Ratios And Trigonometric Identities Fill In The Blanks
Example 1. The value of \(\left(\frac{4}{\sec ^2 \theta}+\frac{1}{1+\cot ^2 \theta}+3 \sin ^2 \theta\right)\) is ________
Solution: \(\frac{4}{\sec ^2 \theta}+\frac{1}{1+\cot ^2 \theta}+3 \sin ^2 \theta\)
= 4 cos2 θ + \(\frac{1}{cosec^2 \theta}\) + 3sin2 θ
= 4 cos2 θ + sin2 θ + 3 sin2 θ = 4 cos2 θ + 4 sin2 θ
= 4 (cos2 θ + sin2 θ) = 4 x 1 =4
∴ Answer is 4.
Example 2. If sin (θ – 30°) = \(\frac{1}{2}\), then the value of cos θ is ______
Solution: sin (θ – 30°) = \(\frac{1}{2}\)
⇒ sin (θ – 30°) = sin 30°
⇒ θ – 30° = 30° ⇒ θ = 60°
cos θ = cos 60° = \(\frac{1}{2}\)
∴ Answer is \(\frac{1}{2}\)
Example 3. If cos2 θ – sin2 θ = \(\frac{1}{2}\), then the value of cos4 θ – sin4 θ is _______
Solution: cos4 θ- sin4 θ
= (cos2 θ)2 – (sin2 θ)2
= (cos2 θ + sin2 θ) (cos2 θ – sin2 θ)
= 1 x \(\frac{1}{2}\) = \(\frac{1}{2}\)
∴ Answer is \(\frac{1}{2}\)
Wbbse Class 10 Trigonometry Notes
Example 4. The value of \(\left(\sin \frac{\pi}{3} \cos \frac{\pi}{6}+\cos \frac{\pi}{3} \sin \frac{\pi}{6}\right)\) is _____
Solution: sin\(\frac{\pi}{3}\)cos\(\frac{\pi}{6}\)+ cos\(\frac{\pi}{3}\)sin\(\frac{\pi}{6}\)
= sin\(\frac{180^{\circ}}{3}\)cos\(\frac{180^{\circ}}{6}\) + cos\(\frac{180^{\circ}}{3}\)sin\(\frac{180^{\circ}}{6}\)
= sin 60° cos 30° + cos 60° sin 30°
= \(\frac{\sqrt{3}}{2}\) x \(\frac{\sqrt{3}}{2}\) + \(\frac{1}{2}\) x \(\frac{1}{2}\) = \(\frac{3}{4}\) + \(\frac{1}{4}\) = 1
∴ Answer is 1.
Example 5. If a cos θ = 4 and a sec θ = 9, then the value of a is _______
Solution: a cos θ.a sec θ = 4 x 9
⇒ a2 x 1 = 36
⇒ a = ± 6
∴ Answer is ± 6.
Angle Of Elevation And Depression Class 10 Solutions
Trigonometry Chapter 2 Trigonometric Ratios And Trigonometric Identities Short Answer Type Questions
Example 1. If r cos θ = 2√3, r sin θ = 2, and 0° < θ < 90°, then determine the value of both r and θ.
Solution: r cos θ = 2√3
r sin θ = 2
r2 cos2 θ + r2 sin2 θ = (2√3)2 + (2)2
⇒ r2 (cos2 θ + sin2 θ) = 12 + 4
⇒ r2 x 1 = 16 ⇒ r = √16 = 4
r sin θ = 2
4 sin θ = 2
⇒ sin θ = \(\frac{2}{4}\) = \(\frac{1}{2}\)
⇒ sin θ = sin 30° ⇒ θ = 30°
∴ r = 2, θ = 30°
Example 2. If sin A + sin B = 2 where 0° ≤ A ≤ 90° and 0° ≤ B ≤ 90°, then find out the value of (cos A + cos B)
Solution: sin A + sin B = 2 = 1 + 1
⇔ sin A + sin B = sin 90° + sin 90°
⇔ sin A = sin 90°
⇔ A = 90°
⇔ Sin B = sin 90°
⇔ B = 90°
⇔ cos A + cos B = cos 90° + cos 90° = 0 + 0 = 0
Example 3. If 0° < θ < 90°, then calculate the least value of (9 tan2 θ + 4 cot2 θ).
Solution: 9 tan2 θ +4 cot2 θ
= (3 tan θ)2 + (2 cot θ)2
= (3 tan θ – 2 cot θ)2 + 2.3 tan θ.2 cot θ
= (3 tan θ- 2 cot θ)2 + 12.1 [tan θ = 1/cot θ]
= (3 tan θ – 2 cot θ)2 + 12
⇔ The least value of any perfect square of the expression is 0 (zero).
⇔ So, the least value of (3 tan θ – 2 cot θ) is zero.
∴ The least value of (9 tan2 θ + 4 cot2 θ) is 12.
Example 4. Calculate the value of (sin6 α + cos6 α + 3 sin2α + cos2α ).
Solution: sin6α + cos6α + 3 sin2α cos2α
= (sin2α)3 + (cos2α)3 + 3 sin2α cos2α
= (sin2α + cos2α)3 – 3.sin2α cos2α (sin2α + cos2α) + 3 sin2α cos2α
= (1)3 – 3 sin2α cos2α (1) + 3 sin2α cot2α
= 1-3 sin2α cos2α + 3 sin2α cos2α = 1
Example 5. If cosec2 θ = 2 cot 2 θ and 0° < θ < 90°, then determine the value of θ.
Solution: cosec2 θ = 2 cot θ
⇒ 1 + cot2 θ = 2 cot θ
⇒ cot2 θ – 2 cot θ + 1 = 0
⇒ (cot θ – 1)2 = 0 ⇒ cot θ – 1 = 0 ⇒ cot θ = 1
⇒ cot θ = cot 45° ⇒ θ = 45°
Class 10 Maths Trigonometry Important Questions
Example 6. If \(\frac{\cos \theta+\sin \theta}{\cos \theta-\sin \theta}=\frac{\sqrt{3}+1}{\sqrt{3}-1}\) then find the value of
Solution: \(\frac{\cos \theta+\sin \theta}{\cos \theta-\sin \theta}=\frac{\sqrt{3}+1}{\sqrt{3}-1}\)
⇒ \(\frac{\cos \theta+\sin \theta+\cos \theta-\sin \theta}{\cos \theta+\sin \theta-\cos \theta+\sin \theta}=\frac{\sqrt{3}+1+\sqrt{3}-1}{\sqrt{3}+1-\sqrt{3}+1}\) [By componendo-dividend process]
⇒ \(\frac{2 \cos \theta}{2 \sin \theta}=\frac{2 \sqrt{3}}{2}\)
⇒ \(\cot \theta=\sqrt{3}\)
⇒ cot θ = cot 30°
⇒ θ = 30°
Example 7. If \(\tan ^2 \frac{\pi}{4}-\sin ^2 \frac{\pi}{6}=x \sec ^2 \frac{\pi}{4} \cos ^2 \frac{\pi}{3}\) then find the value of x.
Solution: \(x \sec ^2 \frac{\pi}{4} \cos ^2 \frac{\pi}{3}=\tan ^2 \frac{\pi}{4}-\sin ^2 \frac{\pi}{6}\)
⇒ \(x \sec ^2 45^{\circ} \cos ^2 60^{\circ}=\tan ^2 45^{\circ}-\sin ^2 30^{\circ}\)
⇒ \(x \times(\sqrt{2})^2 \times\left(\frac{1}{2}\right)^2=(1)^2-\left(\frac{1}{2}\right)^2\)
⇒ x x 2 x \(\frac{1}{4}\) = 1 – \(\frac{1}{4}\)
⇒ \(\frac{x}{2}\) = \(\frac{3}{4}\)
⇒ x = \(\frac{3}{2}\)
Example 8. If tan θ + sin θ = a and tan θ – sin θ = b, then find the value of \(\frac{a^2-b^2}{\sqrt{a b}}\)
Solution: a2 – b2 = (tan θ + sin θ)2 – (tan θ – sin θ)2
= 4 tan θ.sin θ
\(\sqrt{a b}=\sqrt{(\tan \theta+\sin \theta)(\tan \theta-\sin \theta)}=\sqrt{\tan ^2 \theta-\sin ^2 \theta}\)= \(\sqrt{\frac{\sin ^2 \theta}{\cos ^2 \theta}-\sin ^2 \theta}\)
= \(\sqrt{\sin ^2 \theta\left(\frac{1}{\cos ^2 \theta}-1\right)}=\sin \theta \sqrt{\frac{1-\cos ^2 \theta}{\cos ^2 \theta}}\)
= \(\sin \theta \cdot \sqrt{\frac{\sin ^2 \theta}{\cos ^2 \theta}}=\sin \theta \cdot \sqrt{\tan ^2 \theta}=\sin \theta \cdot \tan \theta\)
\(\frac{a^2-b^2}{\sqrt{a b}}=\frac{4 \sin \theta \tan \theta}{\sin \theta \cdot \tan \theta}=4\)
Class 10 Maths Trigonometry Important Questions
Example 9. If a sinθ + b cosθ = c, then find the value of (a cosθ – b sinθ).
Solution: a sinθ+ b cosθ = c
⇒ (a sinθ + bcosθ)2 = c2
⇒ a2 sin2 θ + b2 cos2 θ + 2ab sinθcosθ= c2
⇒ a2 (1 – cos2 θ) + b2 (1 – sin2 θ) + 2ab si θ cosθ = c2
⇒ a2 – a2 cos2 θ + b2 – b2 sin2 θ + 2ab sinθ cosθ = c2
⇒ a2 + b2 – c2 = a2 cos2 θ+ b2 sin2 θ- 2ab cosθ sinθ
⇒ a2 + b2 – c2 = (acosθ – bsinθ)2
⇒ acosθ – bsinθ = ± \(\sqrt{a^2+b^2-c^2}\)
Example 10. If x = a sinθ and y = b tanθ, then find the value of \(\left(\frac{a^2}{x^2}-\frac{b^2}{y^2}\right)\).
Solution: a sinθ = x
⇒ \(\frac{a}{x}=\frac{1}{\sin \theta}={cosec} \theta\)
b tan θ = y
⇒ \(\frac{b}{y}=\frac{1}{\tan \theta}=\cot \theta\)
⇒ \(\frac{a^2}{x^2}-\frac{b^2}{y^2}={cosec}^2 \theta-\cot ^2 \theta=1\)
Example 11. If 0° < θ< 90° and 2 cos2 θ + 3 sinθ = 3 then find the value of θ.
Solution: 2 cos2 θ+ 3 sinθ = 3
⇒ 2 (1 – sin2 θ) + 3 sinθ= 3
⇒ 2-2 sin2 θ + 3 sinθ = 3
⇒ 2 sin2 θ – 3 sinθ + 1 = 0
⇒ 2 sin2 θ – 2 sinθ – sinθ + 1 = 0
⇒ 2 sinθ (sinθ – 1) – 1 (sinθ – 1) = 0
⇒ (sinθ – 1) (2 sinθ – 1) = 0
either sinθ – 1 =0
⇒ sinθ = 1
2 sinθ – 1 = 0
⇒ 2 sinθ = 1
⇒ sinθ = sin90°
⇒ sinθ = \(\frac{1}{2}\)
⇒ θ = 90°
⇒ sinθ = sin 30°
⇒ θ = 30°
As 0° < θ < 90°
∴ The value of θ is 30°
Example 12. If θ is positive acute angle then find the least value of (25 sec2 θ + 49 cos2 θ)
Solution: (25 sec2 θ + 49 cos2 θ)
= (5 secθ)2 + (7 cosθ)2
= (5 secθ – 7 cosθ)2 + 2.5 secθ 7 cosθ
=(5secθ -7cosθ)2 +70secθ.\(\frac{1}{\sec \theta}\)
= (5 secθ – 7 cosθ)2 + 70
(5 secθ – 7 cosθ)2 ≥ 0
∴ Least value of (25 sec2 θ + 49 cos2 θ) is 70.
Example 13. If sinθ + sin2 θ + sin3 θ = 1 then find the value of (cos6 θ- 4 cos4 θ + 8 cos2 θ).
Solution: sinθ+ sin2 θ+ sin3 θ = 1
⇒ sinθ + sin3 θ = 1 – sin2 θ
⇒ sinθ (1 + sin2 θ) = cos2 θ
⇒ sin2 θ (1 + sin2 θ)2 = cos4 θ [squaring both side]
⇒ (1 – cos2 θ) (1 + 1 – cos2 θ)2 = cos4 θ
⇒ (1 -cos2 θ) (2 – cos2 θ)2 = cos4 θ
⇒ (1- cos2 θ) (4 – 4 cos2 θ + cos4 θ) = cos4 θ
⇒ 4 – 4 cos2 θ + cos4 θ – 4 cos2 θ + 4 cos4 θ- cos6 θ = cos4 θ
⇒ cos6 θ – 4 cos4 θ + 8 cos2 θ = 4
Class 10 Maths Trigonometry Chapter 2 Solutions
Example 14. In ΔABC each angle is a positive acute angle. If cos (B + C – A) = 0 and sin (C + A – B) = \(\frac{\sqrt{3}}{2}\), then find the value of A, B, and C.
Solution: cos (B + C – A) = 0
⇒ cos (B + C – A) = cos 90°
⇒ B + C – A = 90° ……(1)
sin (C + A – B) = \(\frac{\sqrt{3}}{2}\)
⇒ sin (C + A – B) = sin 60°
⇒ C + A- B = 60° ……..(2)
(1) + (2), we get
B + C- A + C + A- B= 90° + 60°
⇒ 2C = 150° ⇒ C = 75°
From (2), 75° + A -B = 60°
⇒ A – B = – 15°……(3)
Again, In ΔABC,
A + B + C = 180°
A + B + 75° = 180°
⇒ A + B = 105°….(4)
A + B + A- B = 105°- 15°
⇒ 2A = 90°
⇒ A = 45°
∴ B = 105° – 45° = 60°.