WBBSE Solutions For Class 10 Maths Trigonometry Chapter 3 Trigonometric Ratios Of Complementary

Trigonometry Chapter 3 Trigonometric Ratios Of Complementary

Trigonometric ratios of complementary angle:

⇔ sin (90° – θ) = cos θ

⇔ cos (90° – θ) = sin θ

⇔ tan (90° – θ) — cot θ

⇔ cot (90° – θ) = tan θ

⇔ sec (90° – θ) = cosec θ

⇔ cosec (90° – θ) = sec θ

Read and Learn More WBBSE Solutions for Class 10 Maths

Trigonometry Chapter 3 Trigonometric Ratios Of Complementary True Or False

Example 1. The value of cos 54° and sin 36° are equal.

Solution: cos 54° = cos (90° – 36°)

= sin 36°

∴ The statement is true.

Example 2. The simplified value of (sin 12° – cos 78°) is 1.

Solution: sin 12° – cos 78°

= sin 12° – cos (90° – 12°)

= sin 12° – sin 12° = 0

∴ The statement is false.

WBBSE Notes For Class 10 Geography And EnvironmentWBBSE Notes For Class 10 History And Environment
WBBSE Solutions For Class 10 Life ScienceWBBSE Class 10 Life Science Multiple Choice Questions
WBBSE Solutions for Class 10 MathsWBBSE Class 10 Maths Multiple Choice Questions
WBBSE Notes For Class 10 Physical Science And Environment

 

Example 3. If tan 3θ = cot 2θ and 3θ is a positive acute angle, then the value of θ is 18°.

Solution: tan 3θ= cot 2θ

⇒ tan 3θ = tan (90° – 2θ)

⇒ 3θ = 90° – 20

⇒ 3θ + 2θ = 90°

⇒ 5θ = 90°

⇒ θ = 18°

∴ The statement is True.

WBBSE Solutions For Class 10 Maths Trigonometry Chapter 3 Trigonometric Ratios Of Complementary

Example 4. If tan 5θ.tan 4θ = 1 and 5θ is positive acute angle ; then the value of sin 3θ is \(\frac{1}{\sqrt{2}}\)

Solution: tan 5θ.tan 4θ= 1

⇒ tan 5θ = \(\frac{1}{\tan 4 \theta}\)

⇒ tan 5θ = cot 4θ

⇒ tan 5θ= tan (90° – 4θ)

⇒ 5θ = 90° – 4θ

⇒ 9θ = 90°

⇒ θ = 10°

sin 3θ = sin 3 x 10° = sin 30° = \(\frac{1}{2}\)

∴ The statement is False.

Class 10 Maths Trigonometry Chapter 3 Solutions

Example 5. If cosθ = \(\frac{5}{13}\), then the value of cos (90° – θ) is \(\frac{12}{13}\).

Solution: cos (90° – θ)

= sinθ = \(\sqrt{1-\cos ^2} \theta\)

= \(\sqrt{1-\left(\frac{5}{13}\right)^2}=\sqrt{1-\frac{25}{169}}\)

= \(\sqrt{\frac{144}{169}}=\frac{12}{13}\)

∴ The statement is True.

Trigonometry Chapter 3 Trigonometric Ratios Of Complementary Fill In The Blanks

Example 1. The value of (tan 15° x tan 45° x tan 60° x tan 75°) is ______

Solution: tan 15° x tan 45° x tan 60° x tan 75°

= tan 15° x tan 45d x tan 60° x tan (90° – 15°)

= tan 15° x 1 x √3 x cot 15°

= tan 15° x √3 x \(\frac{1}{\tan 15^{\circ}}\) = √3

∴ Answer is √3

Example 2. The value of (sin 12° x cos 18° x sec 78° x cosec 72°) is ______

Solution: sin 12° x cos 18° x sec 78° x cosec 72°

= sin 12° x cos 18° x sec (90° – 12°) x cosec (90° – 18°)

= sin 12° x cos 18° x cosec 12° x sec 18°

= sin 12° x cos 12° x \(\frac{1}{\sin 12^{\circ}}\) x \(\frac{1}{\cos 18^{\circ}}\)

= 1

Example 3. If A and B are complementary to each other, sin A = ______

Solution: A + B = 90°

sin A = sin (90° – B) = cos B

Wbbse Class 10 Maths Trigonometry Solutions

Example 4. The value of sec 52° sin 38° is ______

Solution: sec 52° sin 38°

= sec 52° sin (90° – 52°)

= sec 52° cos 52°

= sec 52° x \(\frac{1}{\sec 52^{\circ}}\) = 1

∴ Answer is 1.

Example 5. If α + β = 90°, then the value of (1 – tanα.tanβ) is _______

Solution: 1 – tanα.tanβ

= 1 – tanα.tan (90° – α)

= 1 – tanα.cotα

= 1-1 = 0

∴ Answer is zero.

Trigonometric Identities Class 10 Solutions

Trigonometry Chapter 3 Trigonometric Ratios Of Complementary Short Answer Type Question

Example 1. If sin 10θ = cos 8θ and 10θ is a positive acute angle, find the value of tan 9θ.

Solution: sin 10θ = cos 8θ

⇒ sin 10θ = sin (90° – 8θ)

⇒ 10θ = 90° – 8θ

⇒ 18θ = 90°

⇒ θ = 5°

∴ tan 9θ = tan 9 x 5° = tan 45° = 1

Example 2. If tan 4θ x tan 6θ = 1 and 6θ is a positive acute angle, then find the value of θ.

Solution: tan 4θ x tan 6θ= 1

⇒ tan 4θ = \(\frac{1}{\tan 6 \theta}\)

⇒ tan 4θ = cot 6θ

⇒ tan 4θ = tan (90° – 6θ)

⇒ 4θ = 90° – 6θ

⇒ 10θ = 90°

⇒ θ = 9°

Example 3. Find the value of \(\frac{2 \sin ^2 63^{\circ}+1+2 \sin ^2 27^{\circ}}{3 \cos ^2 17^{\circ}-2+3 \cos ^2 73^{\circ}}\)

Solution: \(\frac{2 \sin ^2 63^{\circ}+1+2 \sin ^2 27^{\circ}}{3 \cos ^2 17^{\circ}-2+3 \cos ^2 73^{\circ}}\)

= \(\frac{2 \sin ^2 63^{\circ}+1+2 \sin ^2\left(90^{\circ}-63^{\circ}\right)}{3 \cos ^2 17^{\circ}-2+3 \cos ^2\left(90^{\circ}-17^{\circ}\right)}\)

= \(\frac{2 \sin ^2 63^{\circ}+1+2 \cos ^2 63^{\circ}}{3 \cos ^2 17^{\circ}-2+3 \sin ^2 17^{\circ}}\)

= \(\frac{2\left(\sin ^2 63^{\circ}+\cos ^2 63^{\circ}\right)+1}{3\left(\cos ^2 17^{\circ}+\sin ^2 17^{\circ}\right)-2}\)

= \(\frac{2 \times 1+1}{3 \times 1-2}=\frac{3}{1}=3\)

Example 4. Find the value of tan 1° x tan 2° x tan 3° x…….. x tan 89°

Solution: tan 1° x tan 2° x tan 3° x …… x tan (90° – 2°) x tan (90° – 1°)

= tan 1° x tan 2° x tan 3° x …. x cot 2° x cot 1°

= (tan 1° x cot 1°) x (tan 2° x cot 2°) x ……..x (tan 44° x cot 44°) x tan 45°

= 1 x 1 = 1…… x 1 x 1 = 1

Example 5. If sec 5A = cosec (A + 36°) and 5A is a positive acute angle, then find the value of A.

Solution: sec 5A = cosec (A + 36°)

⇒ sec 5A = sec {90° – (A + 36°)}

⇒ 5A = 90° – A – 36°

⇒ 6A = 54°

⇒ A = 9°

Example 6. If sin (2θ + 45°) = cos (30° – θ) where (2θ + 45°) and (30° – θ) are positive acute angles then find the value of tan 40.

Solution: sin (2θ+ 45°) = cos (30° – θ)

⇒ sin (2θ + 45°) = sin {90° – (30° – θ)}

⇒ 2θ+ 45° = 90° – 30° + θ

⇒ 2θ – θ = 60° – 45°

⇒ θ = 15°

tan 4θ = tan 4 x 15° = tan 60° = √3

Class 10 Trigonometry Chapter 3 Solved Examples

Example 7. If tan θ = cot (n – 1) θ, then find the value of θ.

Solution: tan θ = cot (n – 1) θ

⇒ cot (90° – θ) = cot (nθ – θ)

⇒ 90° – θ = nθ – θ

⇒ nθ = 90°

⇒ θ = \(\frac{90^{\circ}}{n}\)

Example 8. Find the value of \(\sin ^2 \frac{\pi}{16}+\sin ^2 \frac{3 \pi}{16}+\sin ^2 \frac{5 \pi}{16}+\sin ^2 \frac{7 \pi}{16}\)

Solution: \(\sin ^2 \frac{\pi}{16}+\sin ^2 \frac{3 \pi}{16}+\sin ^2 \frac{5 \pi}{16}+\sin ^2 \frac{7 \pi}{16}\)

= \(\sin ^2 \frac{\pi}{16}+\sin ^2 \frac{3 \pi}{16}+\sin ^2\left(\frac{\pi}{2}-\frac{3 \pi}{16}\right)+\sin ^2\left(\frac{\pi}{2}-\frac{\pi}{16}\right)\)

= \(\sin ^2 \frac{\pi}{16}+\sin ^2 \frac{3 \pi}{16}+\cos ^2 \frac{3 \pi}{16}+\cos ^2 \frac{\pi}{16}\)

= \(\left(\sin ^2 \frac{\pi}{16}+\cos ^2 \frac{\pi}{16}\right)+\left(\sin ^2 \frac{3 \pi}{16}+\cos ^2 \frac{3 \pi}{16}\right)\)

= 1 + 1 = 2

Example 9. Find the value of tan 20° tan 35° tan 45° tan 55° tan 70°

Solution: tan 20° tan 35° tan 45° tan 55° tan 70°

= tan 20° tan 35° tan 45° tan (90° – 35°) tan (90° – 20°)

= tan 20° tan 35° x 1 x cot 35° x cot 20°

= tan 20° tan 35° x tan 35° x \(\frac{1}{\tan 35^{\circ}} \times \frac{1}{\tan 20^{\circ}}\) = 1

Wbbse Class 10 Trigonometry Notes

Example 10. If x sinθ  – y cosθ = 3 and x cosθ+ y sinθ = 4 then find the value of \(\sqrt{x^2+y^2}\).

Solution: (x sinθ – y cosθ)2 + (x cosθ + y sinθ)2 = 32 + 42

⇒ x2 sin2 θ – 2xy sinθ cosθ + y2cos2 θ+ x2cos2 θ + 2xy sinθ cosθ + y2 sin2 θ = 25

⇒ x2 (sin2 θ + cos2 θ) + y2 (sin2 θ + cos2 θ) = 25

⇒ x2 x 1 + y2 x 1 = 25

⇒ \(\sqrt{x^2+y^2}= \pm \sqrt{25}= \pm 5\)

 

Leave a Comment