Algebra Chapter 6 Logarithm
⇒ If ax = N (N > 0, a > 0, N ≠ 1), then x is called the logarithm of the number N to the base a and is written as x = logaN
⇒ Thus, if ax = N, then x = logaN
⇒ Conversely, if x = logaN, then ax = N

Formulae on logarithm: (M > 0, N > 0, a > 0, b > 0, a ≠ 1, b ≠ 1 and n is any real number)
- \(\log _a(\mathrm{MN})=\log _a \mathrm{M}+\log _a \mathrm{~N}\)
- \(\log _a\left(\frac{M}{N}\right)=\log _a \mathrm{M}-\log _a \mathrm{~N}\)
- \(\log _a \mathrm{M}^n=x \log _a \mathrm{M}\)
- \(\log _a \mathrm{M}=\log _b \mathrm{M} \times \log _a b\)
- \(\log _a 1=0\)
- \(\log _a a=1\)
- \(a^{\log _a M}=M\)
- \(\log _b a \times \log _a^b\) = 1
- \(\log _b a=\frac{1}{\log _a b}\)
- \(\log _b M=\frac{\log _a M}{\log _a b}\)
Read and Learn More WBBSE Solutions For Class 9 Maths
Algebra Chapter 6 Logarithm True Or False
Example 1. loga1 = 1
Solution: The statement is False.
Example 2. logaa = 1
Solution: The statement is True.
Example 3. alogaM = a
Solution: The statement is False.
Example 4. \(\log _b a=\frac{1}{\log _a b}\)
Solution: The statement is True.
Example 5. \(\log _a \frac{1}{a}\) = 1
Solution: The statement is False.
Example 6. \(\log _b a \times \log _a b\) = 1
Solution: The statement is True.
Example 7. Solving the equation 2x = 7, we get x = log27.
Solution: The statement is True.
Example 8. Logarithm is said that idea of logarithm is 6th fundamental process.
Solution: The statement is False.
Example 9. logaM is undefined when a = 1.
Solution: The statement is True.
Example 10. logaM is defined when a = 0.
Solution: The statement is False.
Algebra Chapter 6 Logarithm Fill In The Blanks
Example 1. If log10x + 1 = 0 then x _______
Solution: \(\frac{1}{10}\)
⇒ log10x = -1
⇒ x = 10-1 = \(\frac{1}{10}\)
Example 2. If b2 = ae, then logb(abc) = _______
Solution: 3
⇒ \(\log _b(b . a c)=\log _b\left(b . b^2\right)=\log _b b^3=3 \log _b b=3\)
Example 3. If \(\log _{a b} a=x\), then \(\log _{a b} b\) = ______
Solution: 1 – x
⇒ \(\log _{a b} a+\log _{a b} b=\log _{a b}(a b)=1\)
∴ \( x + \log _{a b} b=1\)
⇒ or, \(\log _{a b} b=1-x\)
Example 4. If log4(3x+4)= 3 then the value of x is
Solution: 20
⇒ 43 = 3x + 4
⇒ x = \(\frac{64-4}{3}\) = 20
Example 5. If log202 = a then the value of log2010 is ______
Solution: 1 – a.
⇒ \(\log _{20} 10=\log _{20} \frac{20}{2}\)
= \(\log _{20} 20-\log _{20} 2=1-a\)
Example 6. The value of log12(log1916 x log1619) = _______
Solution: 0
⇒ log12(1) = 0
Example 7. If log4 = -2, then n = _______
Solution: \(\frac{1}{2}\)
⇒ \(x^{-2}=4\)
∴ \(\left(\frac{1}{x}\right)^2=2^2\)
∴ \(x=\frac{1}{2}\)
Example 8. If log10(x – 2) = 1 – log102 then x = _____
Solution: 7
⇒ log10 (x -2)+ log102 = 1
⇒ or, log10(2x – 4) = 1
∴ 2x – 4 = 4
⇒ x = 7
Example 9. The value of logs log√28 = ______
Solution: \(2^{\log 2 x^2 x^2}\)
⇒ \(\log _6 \cdot 3 \cdot \log _{\sqrt{2}} 2=\log _6 3 \cdot 2 \times 2=\log _6 6=1\)
Example 10. The value of \(4 \log 2^x\) is _______
Solution: \(_2 2 \log _2 x=_2 \log _2 x^2 x^2\)
Algebra Chapter 6 Logarithm Short Answer Type Questions
Example 1. Let us calculate the value of log4 log4 log4 256.
Solution: log4 log4 log4(4)4 = log4 log44
= log41 = 0
Example 2. Calculate the value of \(\frac{a^n}{b^n}+\log \frac{b^n}{c^n}+\log \frac{c^n}{a^n}\)
Solution: log ax – log bx + log bx – log cx + log cx – log ax = 0
Example 3. Show that \(a^{\log _a x}=x\)
Solution: Let \(\log _a x=\mathrm{M}\)
∴ \(a^M=x\)
Example 4. If \(\log _e 2 \log _x 25=\log _{10} 16 . \log _e 10\)
Solution: \(\log _e 2 \log _x 5^2=\log _{10} 2^4 \log _e 10\)
⇒ or, \(\log _e 2 . \log _x 5^2=4 \log _{10} 2 \log _e 10\)
⇒ or, \(\log _e 2 \log _x 5^2=4 \log _e 2\)
∴ \(x^4=5^2\)
∴ \(x^4=100\),
∴ \(x= \pm \sqrt{5}\)
Example 5. Find the value of \(\log _{2 \sqrt{3}} 1728\).
Solution: let \(\log _{2 \sqrt{3}} 1728\)
∴ \((2 \sqrt{3})^x=1728\)
or, \((2 \sqrt{3})^x=2^6 3^3=(2 \sqrt{3})^6\)
∴ x = 6
Example 6. Expression terms of \(N: \frac{1}{2} \log _3 M+\log _3 N=1\)
Solution: \(\log _3 \sqrt{M}+\log _3 N^3=1\)
⇒ or, \(\log _3 \sqrt{M} N^3=1\)
⇒ or, \(\sqrt{M} N^3=3\)
⇒ or, \(M=\left(\frac{3}{N^3}\right)^2=\frac{9}{N^6}\)
Example 7. Prove that (log x)2 – (log y)2 = \(\log (x y) \log \frac{x}{y}\)
Solution: (log x + log y) (log x log y) = log (xy) log\(\frac{x}{y}\)
Example 8. If \(\log _{30} 3=a \text { and } \log _{30} 5=b\), then find the value of \(\log _{30} 8\)
Solution: \(\log _{30} 2^3=3 \log _{30} \frac{30}{15}=3\left(\log _{30} 30-\log _{30} 15\right)\)
= \(3\left\{1-\log _{30}(3 \times 5)\right\}=3(1-a-b)\)
Example 9. Find the base when 3 is the logarithm of 343.
Solution: logx 343 = 3
∴ x3 = 343 = 73
∴ x = 7
Example 10. Find the simplest value of \(\log _3 5 \times \log _{25} 27\)
Solution: \(\log _3 5 \times \log _{5^2} 3^3=\frac{3}{2} \log _3 5 \times \log _5 3=\frac{3}{2}\)